Size, Position and Length in Value Chains in Latin America

Alvaro Lalanne
Facultad de Ciencias Sociales
Universidad de la República

20 apr 2022

CAF - WORKING PAPER \#2022/04
First version: March 25, 2022
This version: March 25, 2022
Size, Position and Length in Value Chains in Latin America

Alvaro Lalanne ${ }^{1}$
In this article. I develop a framework that divides global value
chains into regional and extra-regional and studies the participa-
tion of Latin American countries in international frag mentation Hon of Latin American countries in in international fragmentatation 25 years of globlization. Measures of depth, position, and length are developed lor each kind of vahe chain. posituon, and lenght are developed bor each kna orfalue chain.
Between 1990 and 2015 the engagement in activities related to international trade increased in every country in Latin America
and the pevevalent way of integration is in Extra-Regional Value and the prevalent way of integration is in Extra-Regional Value Chains. While Suuth Ameinca engages mostly in val. 1 arer ica participates more as end of chains and Mexico switched its position to a net forward position in regional value chains. Finally, the article examines the relationship between participation and lengtho of domestic exgent of ctuirs, finding that a deeper hortering of chains, but this relationship doassoded with Regional.

Enwords
Global Value Chains
Backward Linkages


```
tuss)
the (untries thy reprement CAF does not guarattee the accuracyof the dat induded in this pullication and
Ez2e1 Corporaciön Andina de Fonemto
```

http://scioteca.caf.com/handle/123456789/1823

Content

1. Introduction
2. Methodology
3. Results
4. Conclusions

Introduction

- Fragmentation of world production
- 3 decades of regionalism
- Latin American countries integrate among themselves and with the world
- New databases to measure deepness of globalization

References of literature

- Wang et al (2017a) divides world production according to its share in domestic activities and trade activities, and the last in traditional and global value chain
- Wang et al (2017b) studies length of chains for each category
- World Bank and others (2017), WTO (2019)

Regional input output table

Destination	Intermediate Regional			Intermediate Extraregional			Final regional use			Final Extraregional use			Output
\downarrow Source	1	. . .	G	11	. .	H	1	. . .	G	1^{\prime}	...	H	
1	Z^{11}	...	$Z^{1 t}$	$Z^{11^{\prime}}$.	$Z^{1 k}$	Y^{11}	\ldots	$Y^{1 t}$	Y^{11}	...	$Y^{1 k}$	X^{1}
S	$Z^{\text {s1 }}$	\ldots	$Z^{\text {st }}$	$Z^{s 1^{\prime}}$. .	$Z^{\text {sk }}$	$Y^{s 1}$. .	$Y^{s t}$	$Y^{s 1^{\prime}}$. . .	$Y^{s k}$	X^{s}
G	$Z^{t 1}$. .	$Z^{t t}$	$Z^{t 1^{\prime}}$...	$Z^{t k}$	$\mathrm{Y}^{t 1}$		$Y^{t t}$	$Y^{t 1^{\prime}}$. \cdot	$Y^{t k}$	X^{t}
1^{\prime}	$Z^{1^{\prime} 1}$. .	$Z^{1} t$	$Z^{1^{\prime} 1^{\prime}}$. . .	$Z^{1^{\prime} k}$	$\mathrm{Y}^{1^{\prime} 1}$		$Y^{1^{\prime} t}$	$Y^{1^{\prime} 1^{\prime}}$. .	$Y^{1^{\prime} k}$	X^{1}
f	$Z^{f 1}$		$Z^{f t}$	$Z^{f 1^{\prime}}$. .	$Z^{f k}$	$Y^{f 1}$		$Y^{f t}$	$Y^{f 1}$. . .	$Y^{f k}$	X^{f}
H	$Z^{k 1}$		$Z^{k t}$	$Z^{k 1^{\prime}}$. .	$Z^{k k}$	$Y^{k 1}$		$Y^{k t}$	$Y^{k 1}$		$Y^{k k}$	X^{k}
V. Added	$v a^{1}$	\ldots	$v a^{t}$	$v a^{1}$. .	$v a^{k}$							
Output	$X^{1^{T}}$		$X^{t^{T}}$	$X^{1^{\prime}}$. . .	$X^{1}{ }^{T}$							

Leontief Matrices

International Leontief matrix

$$
A=Z \hat{X}^{-1}
$$

$$
A=\left[\begin{array}{cccccc}
A^{s s} & \ldots & A^{s t} & A^{s f} & \ldots & A^{s k} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
A^{t s} & \ldots & A^{t t} & A^{t f} & \ldots & A^{t k} \\
A^{f s} & \ldots & A^{f t} & A^{f f} & \ldots & A^{f k} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
A^{k s} & \ldots & A^{k t} & A^{k f} & \ldots & A^{k k}
\end{array}\right]
$$

$$
\begin{equation*}
X=A X+Y=A X+Y^{D}+Y^{R}+Y^{F}+Y^{H} \tag{1}
\end{equation*}
$$

International Inverse Leontief matrix

$$
B=(I-A)^{-1}
$$

$B=\left[\begin{array}{cccccc}B^{s s} & \ldots & B^{s t} & B^{s f} & \ldots & B^{s k} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ B^{t s} & \ldots & B^{t t} & B^{t f} & \ldots & B^{t k} \\ B^{f s} & \ldots & B^{f t} & B^{f f} & \ldots & B^{f k} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ B^{k s} & \ldots & B^{k t} & B^{k f} & \ldots & B^{k k}\end{array}\right]$

$$
\begin{equation*}
X=B Y \tag{2}
\end{equation*}
$$

Tracking the origin of value

From the column perspective, the output is the result of the combination of intermediate inputs plus the value added (Va). Leontief function of production:

$$
\begin{equation*}
X^{T}=u \hat{X}=u Z+V a=u A \hat{X}+V \hat{X} \tag{3}
\end{equation*}
$$

Where, V is an $1 \times N(G+H)$ row vector of ratios of value added to product and u is an $1 \times N(G+H)$ vector of ones.
Posmultiplying by \hat{X}^{-1} the expression is:

$$
u=u A+V
$$

That gives rise to the decomposition formula for production.

$$
\begin{equation*}
u I-u A=u(I-A)=V \rightarrow u=V(I-A)^{-1}=V B \rightarrow u=u \hat{V} B \tag{4}
\end{equation*}
$$

Matrix of value added included in final demand

The link between value added in the sector i of country s and the final demand of sector j in country r is represented by the $N(G+H) \times N(G+H)$ matrix $\hat{V} B \hat{Y}$.

$$
\hat{V} B \hat{Y}=\left[\begin{array}{cccc}
v_{1}^{1} b_{11}^{11} y_{1}^{1} & v_{1}^{1} b_{12}^{11} y_{2}^{1} & \ldots & v_{1}^{1} b_{1 j}^{1 r} y_{j}^{r} \\
v_{2}^{1} b_{21}^{11} y_{1}^{1} & v_{2}^{1} b_{22}^{11} y_{2}^{1} & \ldots & v_{2}^{1} b_{2 j}^{r} y_{j}^{r} \\
\vdots & \vdots & \ddots & \vdots \\
v_{i}^{s} b_{i 1}^{s 1} y_{1}^{1} & v_{i}^{s} b_{i 2}^{s 1} y_{2}^{1} & \ldots & v_{i}^{s} b_{i j}^{s r} y_{j}^{r}
\end{array}\right]
$$

The generic term $v_{i}^{s} b_{i j}^{s r} y_{j}^{r}$ represents the total direct and indirect value added sourced in sector i of country $s\left(v_{i}^{s}\right)$ included in final goods production of sector j in country $r\left(y_{j}^{r}\right)$.

$$
\begin{aligned}
& \hat{V} B \hat{Y} u^{T}=\hat{V} B Y=V a \\
& u \hat{V} B \hat{Y}=V B \hat{Y}=Y^{T}
\end{aligned}
$$

Slicing value added in chains

Domestic, regional and extra-regional transactions

$$
\begin{gathered}
\mathrm{A}^{r e g}=\left[\begin{array}{cccccc}
A^{s s} & \ldots & A^{s t} & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
A^{t s} & \ldots & A^{t t} & 0 & \ldots & 0 \\
0 & \ldots & 0 & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & 0 & \ldots & 0
\end{array}\right] ; \\
\mathrm{A}^{-r e g}=A-A^{r e g}=\left[\begin{array}{cccccc}
0 & \ldots & 0 & A^{s f} & \ldots & A^{s k} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & A^{t f} & \ldots & A^{t k} \\
A^{f s} & \ldots & A^{f t} & A^{f f} & \ldots & A^{f k} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
A^{k s} & \ldots & A^{k t} & A^{k f} & \ldots & A^{k k}
\end{array}\right]
\end{gathered}
$$

Domestic, regional and extra-regional transactions

$$
\begin{aligned}
& A^{d}=\left[\begin{array}{cccccc}
A^{s s} & \ldots & 0 & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & A^{t t} & 0 & \ldots & 0 \\
0 & \ldots & 0 & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & 0 & \ldots & 0
\end{array}\right] ; A^{r e g-d}=A^{r e g}-A^{d} \\
& A^{e x t}=\left[\begin{array}{cccccc}
0 & \ldots & 0 & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & 0 & \ldots & 0 \\
0 & \ldots & 0 & A^{f f} & \ldots & A^{f k} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & A^{k f} & \ldots & A^{k k}
\end{array}\right] ; A^{-e x t}=A-A^{e x t}
\end{aligned}
$$

Domestic, regional and extra-regional transactions

It should be defined also the Leontief Inverses matrices of these partitions of A.

$$
L=\left(I-A^{d}\right)^{-1} ; B^{r e g}=\left(I-A^{r e g}\right)^{-1} ; B^{e x t}=\left(I-A^{e x t}\right)^{-1}
$$

Borin and Mancini (2019) uses an equivalency between Leontief inverse matrix and some partition of it.

$$
\begin{equation*}
B=B^{\text {reg }}+B^{\text {reg }} A^{-r e g} B \tag{5}
\end{equation*}
$$

Also:

$$
\begin{align*}
& B^{r e g}=L+L A^{r e g-d} B^{r e g} \tag{6}\\
& B=B^{e x t}+B^{e x t} A^{-e x t} B \tag{7}
\end{align*}
$$

The forward perspective of value chains: Following the use of domestic value added

Applying (5) in $\hat{V} B \hat{Y}$:

$$
\hat{V} B \hat{Y}=\hat{V} B^{r e g} \hat{Y}+\hat{V} B^{r e g} A^{-r e g} B \hat{Y}
$$

Substituting $B^{\text {reg }}$ using (6):

$$
\hat{V} B \hat{Y}=\hat{V} L \hat{Y}+\hat{V} L A^{r e g-d} B^{r e g} \hat{Y}+\hat{V} L A^{-r e g} B \hat{Y}+\hat{V} L A^{r e g-d} B^{r e g} A^{-r e g} B \hat{Y}
$$

Also, B in the third term can be decomposed using (7).

$$
\begin{array}{r}
\hat{V} B \hat{Y}=\hat{V} L \hat{Y}+\hat{V} L A^{r e g-d} B^{r e g} \hat{Y}+\hat{V} L A^{-r e g} B^{e x t} \hat{Y}+ \\
\hat{V} L A^{-r e g} B^{e x t} A^{-e x t} B \hat{Y}+\hat{V} L A^{r e g-d} B^{r e g} A^{-r e g} B \hat{Y} \tag{8}
\end{array}
$$

Domestic value added included in final goods without border crossing of intermediates can be divided according to the destination, using: $Y=Y^{D}+Y^{R}+Y^{F}+Y^{H}$.

Forward-looking segregation of value added

Term	Name	Concept
$\hat{V} L Y^{D}$	Pure domestic value added	Domestic VA included directly in domest consumed final goods
$\hat{V} L Y^{R}$	Traditional exports to the region	DVA included directly in final goods exported to the region
$\hat{V} L Y^{F}$	Traditional exports to extra-region	DVA included directly in final goods exported to extra-region
$\hat{V} L A^{\text {reg }-d} B^{\text {reg }} Y$	Regional value chains	DVA incl. in final goods in the region without stages in extra-region
$\hat{V} L A^{-r e g} B^{\text {ext }} Y$	Extra regional value chains	DVA exported to extra-region for production without stages in the region
$\hat{V} L A^{-r e g} B^{\text {ext }} A^{-e x t} B Y$	Mixed Value Chains	DVA in production of goods where both kind of countries participate
$\hat{V} L A^{\text {reg }-d} B^{\text {reg }} A^{-r e g} B Y$	Mixed Value Chains	(Idem)

Backward-looking segregation of final demand

The equivalent backward-perspective segregation is:

$$
\begin{array}{r}
u \hat{V} B \hat{Y}=V B \hat{Y}=Y^{T}=V L \hat{Y}^{D}+V L \hat{Y}^{R}+V L \hat{Y}^{F}+V B^{\text {reg }} A^{r e g-d} L \hat{Y}+ \\
V B^{\text {ext }} A^{-r e g} L \hat{Y}+V B A^{-e x t} B^{e x t} A^{-r e g} L \hat{Y}+V B A^{-r e g} B^{\text {reg }} A^{r e g-d} L \hat{Y} \tag{9}
\end{array}
$$

Again, there are seven terms: $V L \hat{Y}^{D}, V L \hat{Y}^{R}, V L \hat{Y}^{F}$ accounts for DVA included in final good production, $V B^{\text {reg }} A^{\text {reg }-d} L \hat{Y}$ is RVC: regional value included in final demand, $V B^{e x t} A^{-r e g} L \hat{Y}$ is EVC, extra -regional value included in final demand and the last two are MVC.

Measuring length and position in value chains

Literature defines measures Output Upstreamness, from output to final demand, as the average number of times that the value is counted until it is included in a final good, and Input Downstreamness as the average number of times that the value added has been counted until it is included in the output (Antras et al (2012); Antras and Chor (2013), Miller and Termushoev (2017)).
Wang et al. (2017b) uses this concepts and, defining a chain from value added to final goods production, defines the average length of a chain as the ratio between two matrices.

$$
\begin{equation*}
P L=\frac{\hat{V}\left(1 . I+2 . A+3 . A^{2}+4 . A^{3}+5 . A^{4}+\ldots\right) \hat{Y}}{\hat{V}\left(I+A+A^{2}+A^{3}+A^{4}+\ldots\right) \hat{Y}}=\frac{\hat{V} B B \hat{Y}}{\hat{V} B \hat{Y}} \tag{10}
\end{equation*}
$$

The numerator uses the equivalence:

$$
1 . I+2 . A+3 . A^{2}+4 . A^{3}+5 . A^{4}+\cdots=B B
$$

And the denominator uses:

$$
B=(I-A)^{-1}=\left(I+A+A^{2}+A^{3}+A^{4}+\ldots\right)
$$

Forward and backward length of chains

As for measures on participation, there is also a forward and a backward perspective of length of chains.

1. Forward perspective (Sector-Country as source of value):

$$
P L_{v}=\frac{\hat{V} B B \hat{Y} u^{T}}{\hat{V} B \hat{Y}_{u^{T}}}=\frac{\hat{V} B B Y}{\hat{V} B Y}
$$

2. Backward perspective (Sector-Country as final user of value):

$$
P L_{y}=\frac{u \hat{V} B B \hat{Y}}{u \hat{V} B \hat{Y} u^{T}}=\frac{V B B \hat{Y}}{V B \hat{Y}}
$$

Slicing Length of Value chains (Forward)

Denominator	Numerator	Concept
$\hat{V} B Y$	$\hat{V} B B Y$	Total forward length of chains
$\hat{V} L Y^{D} ; \hat{V} L Y^{R} ; \hat{V} L Y^{F}$	$\hat{V} L L Y^{D} ; \hat{V} L L Y^{R} ; \hat{V} L L Y^{F}$	Length domestic chains ($\mathrm{D}, \mathrm{R}, \mathrm{F}$)
$\hat{V} L A^{\text {reg }-d} B^{\text {reg }} Y$	$\begin{aligned} & \hat{V} L L A^{\text {reg-d }} B^{\text {reg }} Y+ \\ & \hat{V} L A^{\text {reg }-d} B^{\text {reg }} B^{\text {reg }} Y \end{aligned}$	Domestic length of RVC Regional length of RVC
$\hat{V} L A^{-r e g} B^{\text {ext }} Y$	$\begin{aligned} & \hat{V} L L A^{-r e g} B^{e x t} Y+ \\ & \hat{V} L A^{-r e g} B^{e x t} B^{e x t} Y \end{aligned}$	Domestic length of EVC Extra regional lenght of EVC
$\hat{V} L A^{-r e g} B^{e x t} A^{-e x t} B Y$	$\begin{aligned} & \hat{V} L L A^{-r e g} B^{e x t} A^{-e x t} B Y+ \\ & \hat{V} L A^{-r e g} B^{\text {ext }} B^{e x t} A^{-e x t} B Y+ \\ & \hat{V} L A^{-r e g} B^{\text {ext }} A^{-e x t} B B Y \end{aligned}$	Domest.length mix chains (1) Extra reg.length mix chains (1) Global length of mix chains (1)
$\hat{V} L A^{\text {reg -d }} B^{\text {reg }} A^{-r e g} B Y$	$\hat{V} L L A^{\text {reg }-d} B^{\text {reg }} A^{-r e g} B Y+$ $\hat{V} L A^{\text {reg }-d} B^{\text {reg }} B^{\text {reg }} A^{-r e g} B Y+$ $\hat{V} L A^{\text {reg }-d} B^{\text {reg }} A^{-r e g} B B Y$	Domest.length mix chains (2) Extra reg.length mix chains (2) Global length of mix chains (2) 19

Data and Regions

- Database: EORA - UNCTAD
- Time Span: 1990-2015
- 26 sectors
- 189 countries
- Latin America, divided in 3 sub-regions

Mexico (NAFTA/USMCA)
Central America + Dom. Rep.
South America

Share of value related to international trade in total value

Value related to international trade by activity

Mexico

South America Pacific

Central America + DR

MERCOSUR

Performance and position in Value Chains

A- Big countries: Mexico and Brazil

Mexico changed its position in RVC: started as a user of regional value (an end of chains) but finished a net
source. USMCA new rules of origin may reverse the change.
Brazil is a net user and biased to Extra Regional Value Chains.

Performance and position in Value Chains

B- Medium size countries: Argentina, Chile, Colombia and Peru

Argentina is biased to RVC and performs as a net source of value. Chile and Peru highlights as source of value to EVC.
Colombia engaging in VC is scarce

Performance and position in Value Chains

C- Central American Countries

Rise in EVC participation until the global crisis and a fall thenceforth. Strongly backward biased participation in EVC. RVC in Central America is less important but they have a rising tendency.

Performance and position in Value Chains

D- Small South American Countries

RVC is important (forward) for Paraguay and
Bolivia. Ecuador is strongly forward in EVC and Uruguay is backward both in RVC and EVC. All these countries' participation in international value chains raised their importance in the period

Length of chains: domestic and international segment

1992-1993

Length of chains: domestic and international segment

Differences 1992/3-2014/15

Latin America did not contribute to rise in fragmentation of production. Domestic stages shortened in every flow

Participation and Length of chains

Change in average length and in share of value in total value: 1992-2015. LAC countries

Despite having negative correlation between participation and length in both kinds of chains, only rising participation in EVC led to higher specialization

Conclusions

- Both global and regional trade activities gained participation in LAC countries since 1990
- Nevertheless, no country in LAC reached the level of integration of European and East Asian Blocks
- Mexico, Bolivia and Argentina gained sizable participation in (biased forward) RVC
- Chile, Peru and Ecuador raised thier participation in EVC, on a forward basis
- Brazil and Colombia show little involvement in RVC and backward position in both
- Central American countries are strongly biased towards backward participation
- Across LAC countries, higher involvement in GVC is associated with higher specialization, but increasing involvement only raise specialization in EVC (not in RVC)

Main References

Wang, Zhi and Shang-Jin Wei and Xinding Yu, and Kunfu Zhu (2017a) Measures of Participation in Global Value Chains and Global Business Cycle National Bureau of Economic Research N 23222.
Wang, Zhi and Shang-Jin Wei and Xinding Yu, and Kunfu Zhu (2017b) Characterizing Global Value Chains: Production Length and Upstreamness National Bureau of Economic Research N 23261.
Antràs, Pol and Chor, Davin (2018) On the measurement of upstreamness and downstreamness in global value chains World Trade Evolution: Growth, Productivity and Employment pages 126-194.
Borin, Alessandro, and Michele Mancini (2019) Measuring What Matters in Global Value Chains and Value-Added Trade World Bank Policy Research Working Paper N 8804.
Miller, Ronald E., and Umed Temurshoev (2019) Output Upstreamness and Input Downstreamness of Industries/Countries in World Production International Regional Science Review volume 40, number 5, pages 443-75.

Muchas gracias

