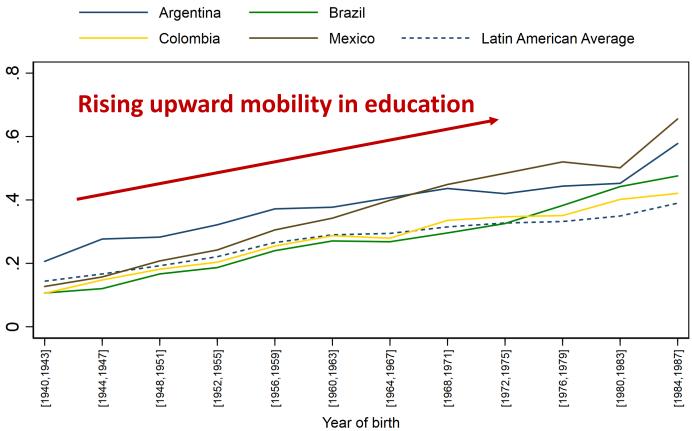
INTERGENERATIONAL TRANSMISSION OF LOCKDOWN CONSEQUENCES:

PROGNOSIS OF THE LONGER-RUN PERSISTENCE OF COVID-19 IN LATIN AMERICA

Guido Neidhöfer ^{a)} / Nora Lustig ^{b)} / Mariano Tommasi ^{c)}

a) ZEW Mannheimb) Tulane Universityc) Universidad de San Andres

April 2021



... in Latin America


Probability of disadvantaged children to complete secondary education

Graph from Lustig/Neidhöfer/Tommasi "Short and long run distributional impacts of COVID-19 in Latin America. Data source: MOBILITY-LATAM Data; see Neidhöfer, G., Serrano, J., & Gasparini, L. (2018). Educational inequality and intergenerational mobility in Latin America: A new database. *Journal of Development Economics*.

...AND THEN THERE WAS COVID-19

PROGNOSIS OF THE LONGER-RUN PERSISTENCE OF COVID-19

Aim: Estimate the effects of the pandemic shock on human capital.

Exercise:Estimate counterfactual pandemic scenario for past generations.What if past cohorts would have experienced such a situation as today?

Main channel:School closures(+ parental job loss and health shocks)

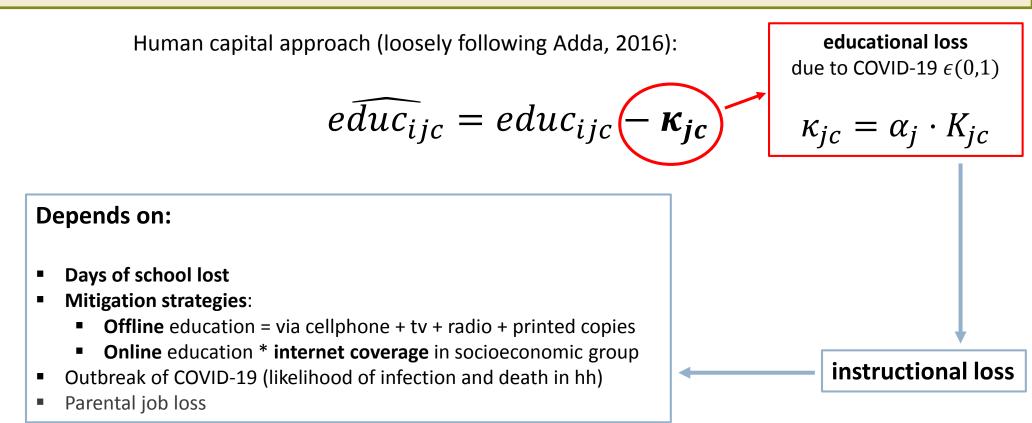
Main **questions**:

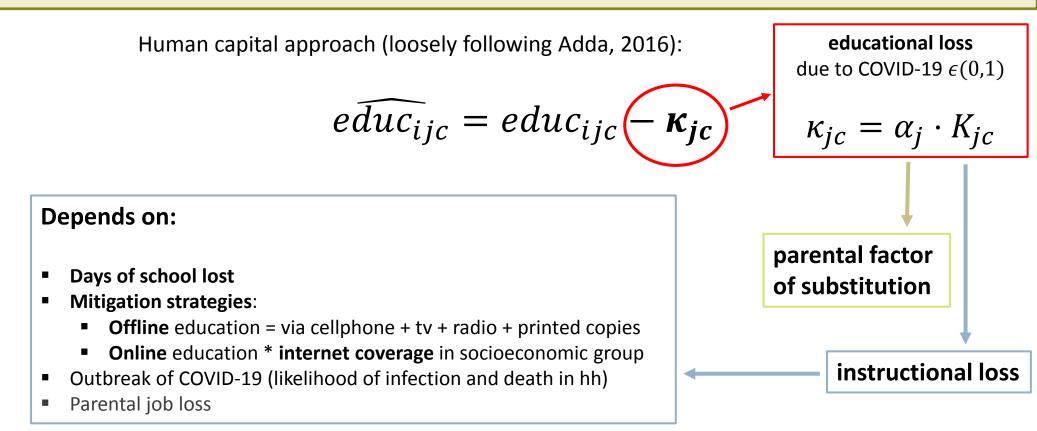
- How strong could the shock affect educational inequality (of opportunity) ?
- Have public policies been able to mitigate the negative impact ?

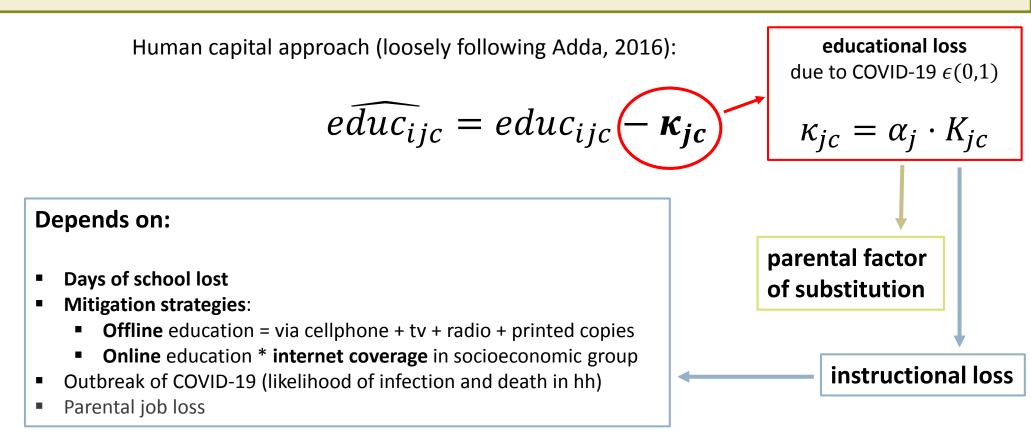
Human capital approach (loosely following Adda, 2016):

$$e\widehat{duc_{ijc}} = educ_{ijc} - \kappa_{jc}$$

educ	reported years of education
к	share of the school year lost
<i>educ</i>	post-pandemic counterfactual
i	individual
j	socio-economic background
С	country


Human capital approach (loosely following Adda, 2016):


$$e\widehat{duc_{ijc}} = educ_{ijc} - \kappa_{jc}$$


educational loss due to COVID-19 $\epsilon(0,\!1)$

 $\kappa_{ic} = \alpha_i \cdot K_{ic}$

- educ reported years of education
- κ share of the school year lost
- *educ post-pandemic counterfactual*
- i individual
- j socio-economic background
- c country

\rightarrow our estimates aim at capturing a lower bound

t

Т

n

а

$$\kappa_{jc} = \alpha_j \cdot K_{jc}$$

$$K_{jc} = \frac{t_c \left(1 - f_c \cdot \delta - n_c \cdot A_{jc} \cdot (1 - \delta)\right) + \tau}{T_c}$$

days lost = date of school reopening – date of school closure (counting school vacations)
total days of schooling in regular year

index of **offline education** = (education via cellphone + tv + radio + printed copies)/4

- index of **online education** = digital conditions (from SIGED, 2020)
- **internet coverage** in socioeconomic group *j*
- δ weight of online vs offline education (set to 0.5)
- au instructional loss due to COVID-19 **infection** or **death** in household

$$\kappa_{jc} = \alpha_j \cdot K_{jc}$$

$$K_{jc} = \frac{t_c \left(1 - f_c \cdot \delta - n_c \cdot A_{jc} \cdot (1 - \delta)\right) + \tau}{T_c}$$

tdays lost = date of school reopening - date of school closure (counting school vacations)Ttotal days of schooling in regular yearfindex of offline education = (education via cellphone + tv + radio + printed copies)/4nindex of online education = digital conditions (from SIGED, 2020)ainternet coverage in socioeconomic group j δ weight of online vs offline education (set to 0.5) τ instructional loss due to COVID-19 infection or death in household

 $\kappa_{jc} = \alpha_j \cdot K_{jc}$

Conceptually based on the literature analyzing the effect that parents have on the human capital of their children (see e.g. "Summer learning loss").

$$\alpha_j = 1 - \frac{educ^{parents}}{\max(educ^p)}$$

parental factor of substitution

For $educ^p = 0$	\rightarrow the entire K-portion of the schoolyear is lost.
For $educ^p = max(educ^p)$	\rightarrow parents substitute school perfectly.

Note:

- **EITHER** Instructional loss **randomly attributed to share** α_j **of the population** in group *j concentrated instructional losses*
- OR Share α_j of the instructional loss attributed to all individuals in group *j* dispersed instructional losses

ELEMENTS OF K (INSTRUCTIONAL LOSS)

	I				internet		COVID-19 (09/2020)		1	$E[\kappa_{jc}]$	
country	t	Т	offline	online	(j=illiterate)	(j=some tertiary)	Cases per inhabitant	Deaths per inhabitant	Avg. HH size	(j=illiterate)	(j=some tertiary)
ARG	154	180	0.75	0.69	0.63	0.78	0.01090	0.00023	3.3	0.35	0.04
BOL	157	200	0.50	0.25	0.12	0.76	0.01062	0.00062	3.5	0.58	0.07
BRA	157	200	0.50	0.63	0.49	0.91	0.01972	0.00060	3.3	0.47	0.05
CHL	154	190	0.75	0.75	0.68	0.90	0.02245	0.00062	3.6	0.30	0.03
COL	150	200	0.75	0.75	0.32	1.00	0.01350	0.00043	3.5	0.38	0.03
CRI	154	200	0.50	0.50	0.66	0.79	0.00989	0.00011	3.5	0.45	0.06
DOM	72	197	0.25	0.44	0.67	0.80	0.00932	0.00018	3.5	0.27	0.03
ECU	100	200	0.75	0.56	0.29	0.85	0.00637	0.00061	3.8	0.27	0.03
SLV	158	200	0.50	0.38	0.14	0.96	0.00411	0.00012	4.1	0.57	0.06
GTM	145	180	0.75	0.56	0.31	1.00	0.00448	0.00016	4.8	0.43	0.04
HND	162	200	1.00	0.56	0.13	0.90	0.00669	0.00021	3.9	0.38	0.03
MEX	136	185	0.25	0.50	0.33	1.00	0.00504	0.00054	3.7	0.58	0.06
PAN	163	185	0.50	0.38	0.30	0.86	0.02317	0.00050	3.7	0.61	0.07
PRY	158	200	0.75	0.38	0.28	1.00	0.00344	0.00007	4.6	0.45	0.05
PER	154	185	0.50	0.69	0.15	0.87	0.02141	0.00093	3.8	0.58	0.05
URY	75	180	0.25	1.00	0.46	0.90	0.00049	0.00001	2.8	0.27	0.02
VEN	121	180	0.25	0.33	0.63	0.78	0.00191	0.00002	3.3	0.52	0.07

ELEMENTS OF K (INSTRUCTIONAL LOSS)

	[inter	<i>internet COVID-19 (09/2020)</i>		COVID-19 (09/2020)		Ε[κ	jc]
country	t	Т	offline	online	(j=illiterate)	(j=some tertiary)	Cases per inhabitant	Deaths per inhabitant	Avg. HH size	(j=illiterate)	(j=some tertiary)
ARG	154	180	0.75	0.69	0.63	0.78	0.01090	0.00023	3.3	0.35	0.04
BOL	157	200	0.50	0.25	0.12	0.76	0.01062	0.00062	3.5	0.58	0.07
BRA	157	200	0.50	0.63	0.49	0.91	0.01972	0.00060	3.3	0.47	0.05
CHL	154	190	0.75	0.75	0.68	0.90	0.02245	0.00062	3.6	0.30	0.03
COL	150	200	0.75	0.75	0.32	1.00	0.01350	0.00043	3.5	0.38	0.03
CRI	154	200	0.50	0.50	0.66	0.79	0.00989	0.00011	3.5	0.45	0.06
DOM	72	197	0.25	0.44	0.67	0.80	0.00932	0.00018	3.5	0.27	0.03
ECU	100	200	0.75	0.56	0.29	0.85	0.00637	0.00061	3.8	0.27	0.03
SLV	158	200	0.50	0.38	0.14	0.96	0.00411	0.00012	4.1	0.57	0.06
GTM	145	180	0.75	0.56	0.31	1.00	0.00448	0.00016	4.8	0.43	0.04
HND	162	200	1.00	0.56	0.13	0.90	0.00669	0.00021	3.9	0.38	0.03
MEX	136	185	0.25	0.50	0.33	1.00	0.00504	0.00054	3.7	0.58	0.06
PAN	163	185	0.50	0.38	0.30	0.86	0.02317	0.00050	3.7	0.61	0.07
PRY	158	200	0.75	0.38	0.28	1.00	0.00344	0.00007	4.6	0.45	0.05
PER	154	185	0.50	0.69	0.15	0.87	0.02141	0.00093	3.8	0.58	0.05
URY	75	180	0.25	1.00	0.46	0.90	0.00049	0.00001	2.8	0.27	0.02
VEN	121	180	0.25	0.33	0.63	0.78	0.00191	0.00002	3.3	0.52	0.07

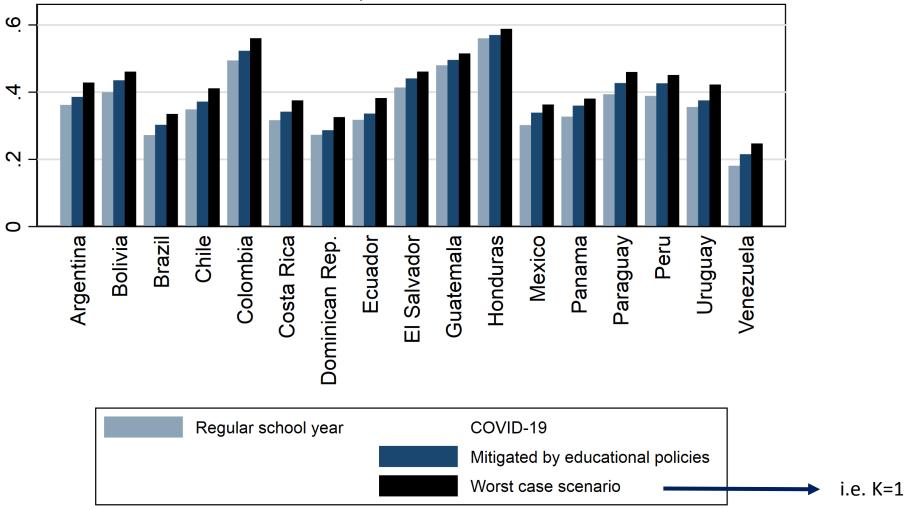
On average, **children of illiterate parents** in **Argentina** lost **35%** of instructional time due to COVID-19, in **Mexico almost 60%.**

1

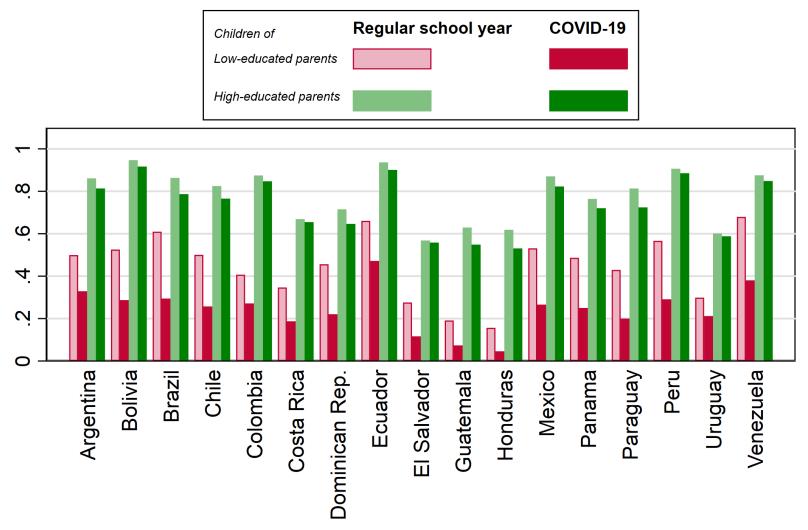
Expected instructional loss among individuals in socioeconomic group *j*

SIMULATION

OF EFFECTS ON INTERGENERATIONAL PERSISTENCE

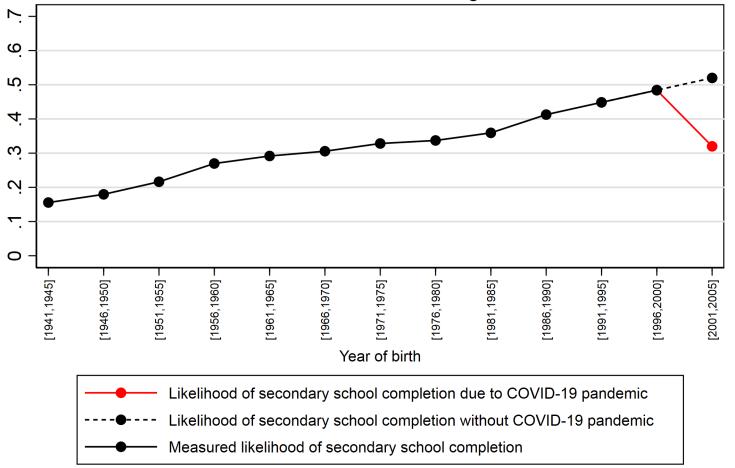

MICRO-DATA

- Latinobarometro 1998-2017
 - Harmonized representative survey for 18 Latin American countries
 - Very suitable to study intergenerational persistence (see Neidhöfer et al., 2018; Neidhöfer, 2019)
- People born 1987-94 (respondent's age > 23)
- Information on own and parental education


MEASUREMENT

- $Educ^{c} = \alpha + \beta Educ^{p} + \varepsilon \rightarrow$ slope coefficient
 - Where Educ are years of schooling of parents (p) and children (c)
- $P(Educ^{c} \ge s | Educ^{p})$ \rightarrow proability of upward mobility / top persistence
 - Where s is a completed secondary degree (12 years of schooling)

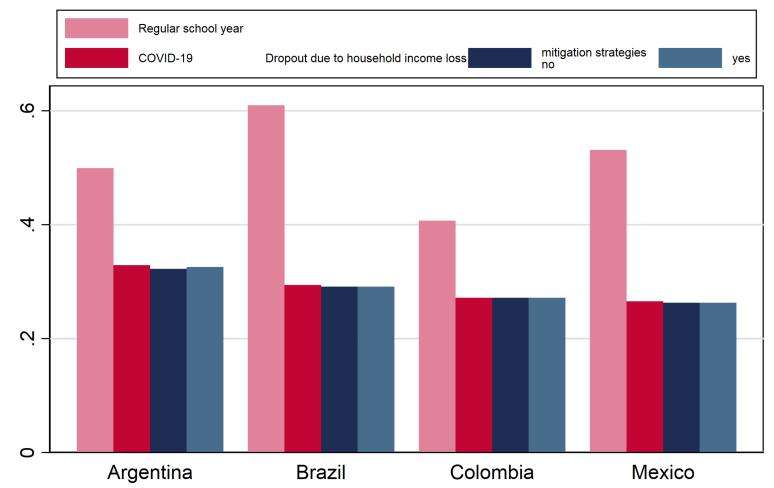
Intergenerational persistence of education - slope coefficient -


Source: own estimates using Latinobarometro 1998-2017.

Note: Complete secondary education defined as having obtained at least 12 years of schooling. Source: own estimates using Latinobarometro 1998-2017.

LIKELIHOOD TO COMPLETE SECONDARY OF LOW BACKGROUND CHILDREN BACK TO THE LEVELS OF THE 60S

Likelihood of disadvantaged children to complete secondary education - Latin American average -

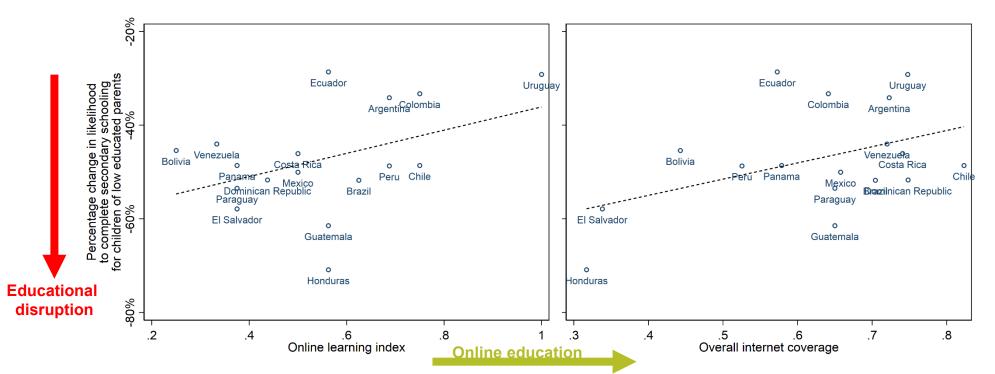


COUNTERFACTUAL EXERCISE (CONT'D)

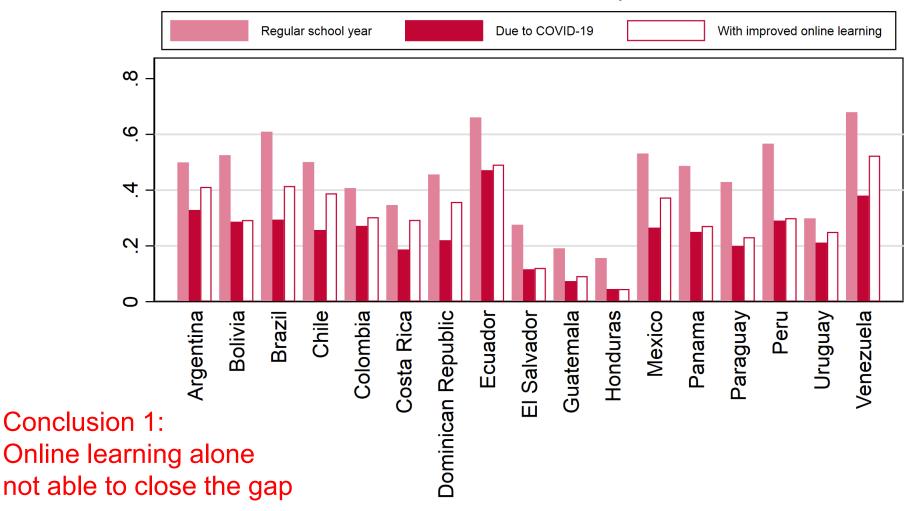
- Parental job loss may cause educational drop out (Duryea et al., 2007; Cerutti et al., 2019).
- New **counterfactual** measure of years of schooling is $\widetilde{e_{ijc}} = \widehat{e_{ijc}} - \alpha_j \cdot \underline{D_{jc}}$
- *D_{jc}* the probability of parents with educational background j in country c to lose >50% of their income due to the pandemic.
- To estimate these probabilities, we rely on the microsimulation exercise adopted in Lustig et al. (2020) to Argentina, Brazil, Colombia, and Mexico.

Additional impact of income loss is marginal

Likelihood to complete secondary education children of low educated parents

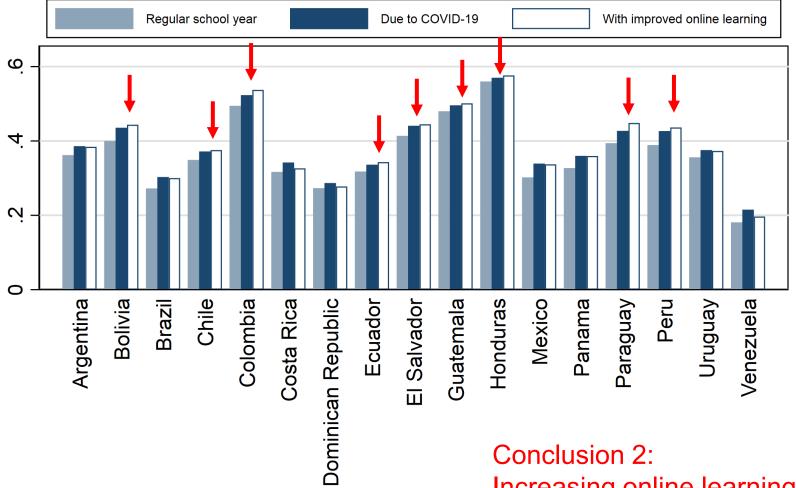


Method:


Estimate P(income loss>50%) = D_{jc} by education of household head w/ and w/o mitigation strategies (microsimulation as in Lustig et al. (2020)) and impute instructional loss of 1 year to $\alpha_j \cdot D_{jc}$ share of the within group population (by parental background)

MITIGATION THROUGH ONLINE LEARNING

- Online learning to reduce instructional loss during the pandemic (e.g. Clark et al., 2020)
- Expansion useful in the context of Latin America?


Likelihood to complete secondary education children of low educated parents

Method: set online learning to 100% and weight δ to 1.

Note: Complete secondary education defined as having obtained at least 12 years of schooling. Source: own estimates using Latinobarometro 1998-2017.

Intergenerational persistence of education - slope coefficient -

Method: set online learning to 100% and weight δ to 1. Source: own estimates using Latinobarometro 1998-2017. Increasing online learning without changes to digital infrastructure may have **regressive effect**

CAVEATS

- No cumulative effects of learning loss and no additional effect on other features (e.g. nutrition, obesity, mental health, teenage pregnancy)
 - even stronger learning losses \rightarrow our estimates are a lower bound

- Same human capital loss for all ages (or, equivalently, all individuals in the sample are hit at the same age)
 - bias not clear: may be easier to make up in earlier grades OR older children might be less dependent on their parents
 → anyway, unlikely to offset the entire effect

TO SUM UP...

Asymmetric COVID-19 shock imperils equality of opportunity

Educational mitigation strategies not sufficient to close the gap so far...

Increasing relative returns to skills may cause higher income inequality in the long-run

WHAT CAN BE DONE?

SOME THOUGHTS

Is it safe to re-open schools?

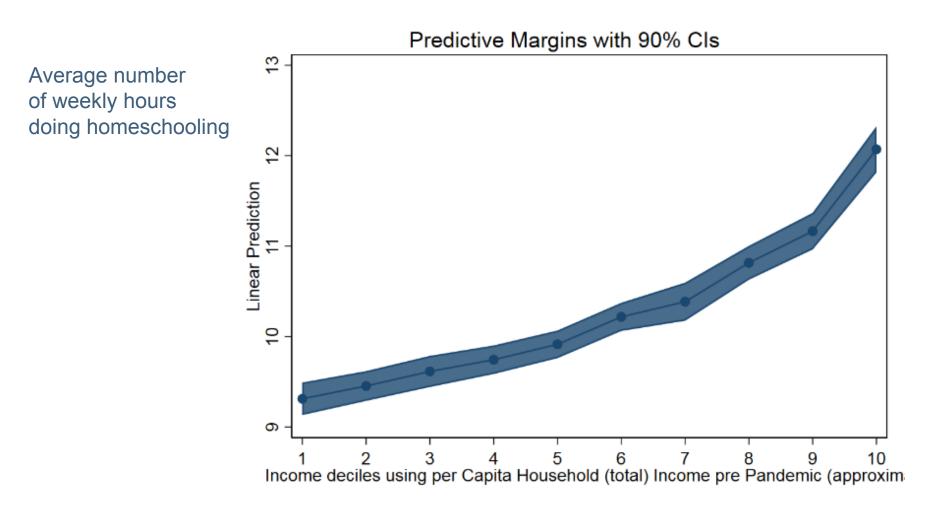
Rethink schooling!

→ Develop tools to sustain the learning process in and outside of the classroom.

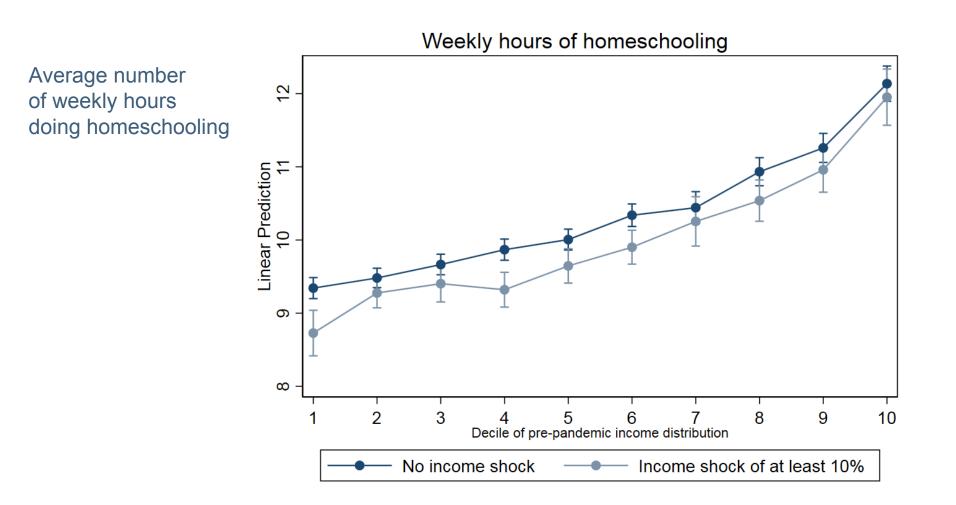
- Is online education enough to level the playing field? NO!
 - Not without targeted infrastructural investment.
- Focus on the most vulnerable children at risk to fall behind.
- Protect the financing of public education from cuts and reallocation of funding.
- Benefit from comparative advantages of international cooperation.

THANKS A LOT FOR YOUR ATTENTION! COMMENTS ARE WELCOME!

Resources:

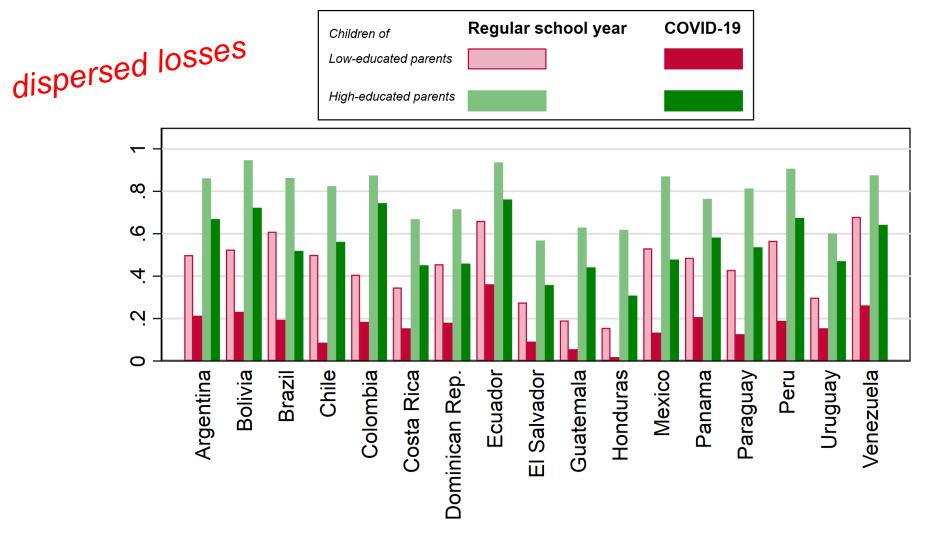

Working paper: CEQ, ECINEQ, UdeSA, ZEW

 Americas "Back to the 1960s? Education May Be Latin America's Most Lasting Scar from COVID-19" by Nora Lustig and Guido Neidhöfer and Mariano Tommasi | December 3, 2020
 Spanish translation published by *El Tiempo* (Colombia)

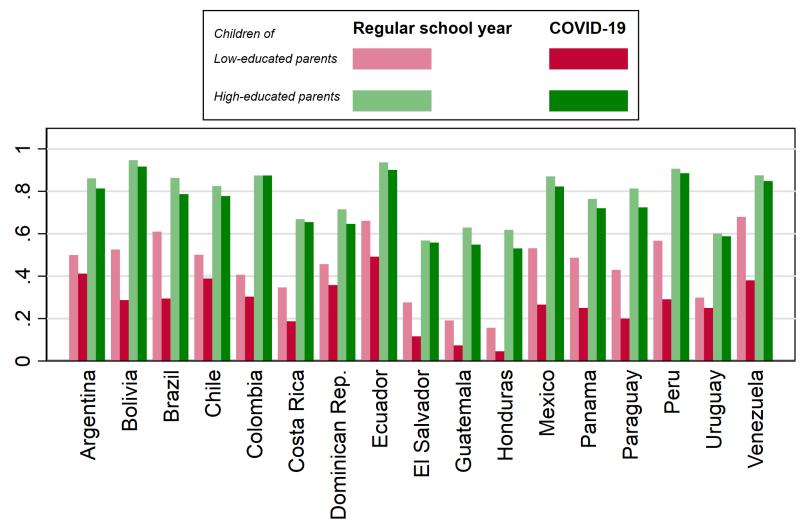

 On intergenerational mobility in Latin America: https://mobilitylatam.website/

CHANNELS: HOMESCHOOLING INEQUALITY

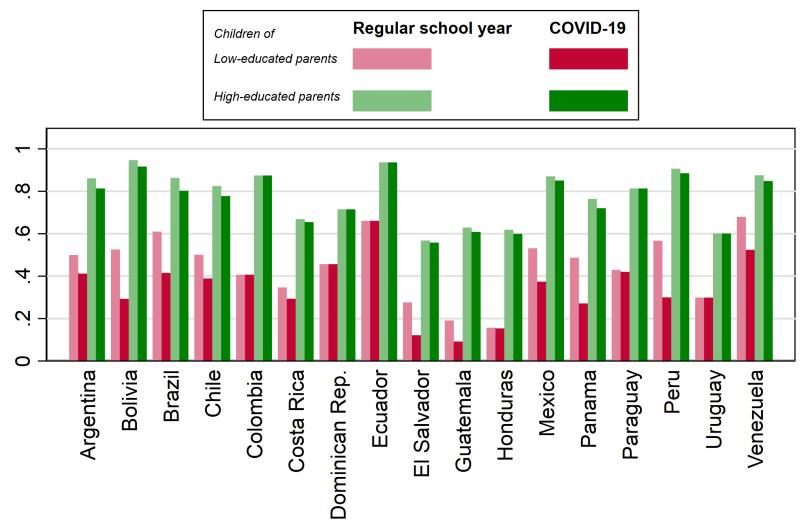
CHANNELS: HOMESCHOOLING INEQUALITY


APPENDIX

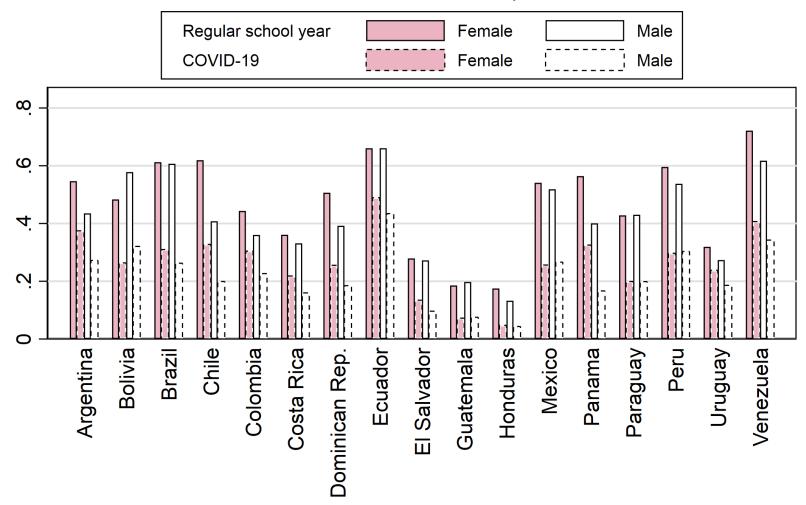
MICROSIMULATION (FOLLOWING LUSTIG ET AL., 2020) HOUSEHOLDS LOSING >50% OF THEIR INCOME (IN %)


Without mitigation programs							
Level of education	Argentina	Brazil	Colombia	Mexico			
Illiterate	5.5	6.9	9.1	6.9			
Incomplete primary	8.6	12.0	9.6	9.9			
Complete primary	12.9	14.6	13.1	13.3			
Incomplete Secondary	14.8	16.4	16.2	15.9			
Complete Secondary	12.3	14.2	14.3	12.5			
Incomplete Tertiary	9.1	12.0	12.1	8.9			
Complete Tertiary	6.9	5.5	9.2	6.6			

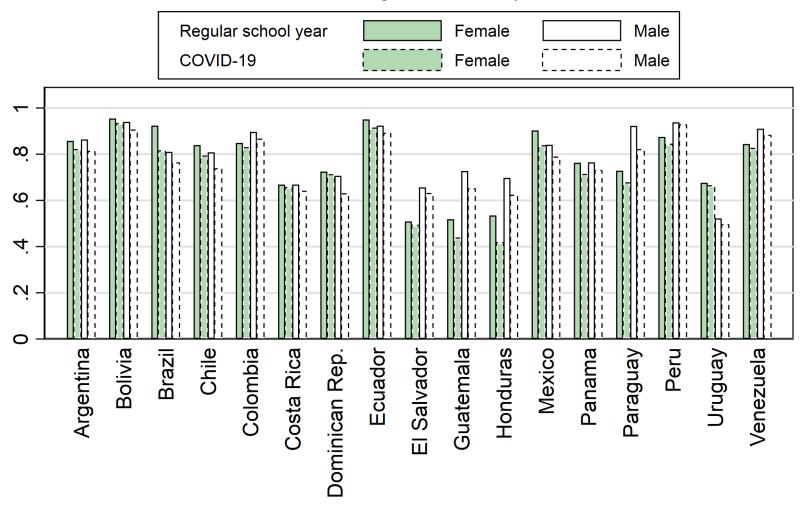
With mitigation programs


Level of education	Argentina	Brazil	Colombia	Mexico
Illiterate	2.1	5.1	8.6	6.9
Incomplete primary	7.6	9.3	9.3	9.9
Complete primary	10.9	11.9	12.9	13.3
Incomplete Secondary	12.4	13.6	15.8	15.9
Complete Secondary	10.9	12.3	14.2	12.5
Incomplete Tertiary	8.4	10.8	12.1	8.9
Complete Tertiary	6.8	5.0	9.1	6.6

Note: Complete secondary education defined as having obtained at least 12 years of schooling. Source: own estimates using Latinobarometro 1998-2017.



Note: Complete secondary education defined as having obtained at least **11.75** years of schooling. Source: own estimates using Latinobarometro 1998-2017.


Note: Complete secondary education defined as having obtained at least **11.5** years of schooling. Source: own estimates using Latinobarometro 1998-2017.

Likelihood to complete secondary education children of low-educated parents

Note: Complete secondary education defined as having obtained at least 12 years of schooling. Source: own estimates using Latinobarometro 1998-2017.

Likelihood to complete secondary education children of high-educated parents

Note: Complete secondary education defined as having obtained at least 12 years of schooling. Source: own estimates using Latinobarometro 1998-2017.