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Abstract

We extend the methodology for inference in SVARs identified with sign restrictions developed
by Rubio-Ramirez et al. (2010) to also allow for zero restrictions. Then we use this methodology
to answer the following questions: Are optimism shocks an important source of business cycle
fluctuations? Are deficit-financed tax cuts better than deficit-spending to increase output? These
two questions have been previously studied in the literature and the answers have been quite definite.
Unfortunately, we show that these sharp conclusions are due to shortcomings in the current methods
used for inference since none of the existing methods correctly draws from the posterior distribution
of structural parameters conditional on the sign and zero restrictions holding. Our methodology
properly draws from this posterior distribution. Once draws are correctly done, it is very hard
to support that either optimism shocks are an important source of business cycle fluctuations or
deficit-financed tax cuts work best at improving output as the literature has previously claimed.

Our method is not only correct but also faster than current ones.
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1 Introduction

Are optimism shocks an important source of business cycle fluctuations? Are deficit-financed tax
cuts better than deficit-spending to increase output? Several questions such as these have been
previously studied in the literature using SVARs identified imposing sign and zero restrictions on
impulse response functions and frequently the answers have been definite. Beaudry et al. (2011)
conclude that optimism shocks play a pivotal role in economic fluctuations and Mountford and
Uhlig (2009) conclude that deficit-financed tax cuts are better to stimulate economic activity. Un-
fortunately, we show that these sharp conclusions are due to shortcomings in the current methods
used for inference: none of the existing methods correctly draws from the posterior distribution of
structural parameters conditional on the sign and zero restrictions.

The most widely used method is Mountford and Uhlig (2009)’s penalty function approach.
Instead of drawing from the posterior distribution of structural parameters such that sign and zero
restrictions hold, the penalty function approach selects a single value of the structural parameters by
minimizing a loss function. We show that this approach has several shortcomings that crucially affect
inference. First, the penalty function approach imposes additional sign restrictions on variables that
are seemingly unrestricted, which bias the results. Indeed, for a particular class of sign and zero
restrictions we can even formally recover the additional sign restrictions. Second, because it chooses
a single value of structural parameters, the penalty function approach creates artificially narrow
confidence intervals that severely affect inference and the economic interpretation of the results.
Baumeister and Benati (2010) and Benati (2013) provide another approach that, although does
not minimize any loss function, suffers from similar limitations than the penalty function approach
because it neither draws from the posterior distribution of structural parameters.

This paper presents an efficient algorithm for inference in SVARs identified with sign and zero
restrictions that properly draws from the posterior distribution of structural parameters. We ex-
tend the sign restrictions methodology developed by Rubio-Ramirez et al. (2010) to allow for zero
restrictions. As it was the case in Rubio-Ramirez et al. (2010) we put forward most of our results
imposing sign and zero restrictions on the impulse response functions, but our algorithm allows for a
larger class of restrictions. Our key theoretical contribution shows how to efficiently draw from the
uniform distribution with respect to the Haar measure on the set of orthogonal matrices conditional
on some linear restrictions on their coefficients holding. This crucial step allows us to draw from

the posterior distribution of structural parameters conditional on the sign and zero restrictions.



We show the capabilities of our methodology and the shortcomings of the penalty function
approach by means of two applications previously analyzed in the literature using the penalty
function approach. The first application is related to optimism shocks as in Beaudry et al. (2011).
The aim of Beaudry et al. (2011) is to provide new evidence on the relevance of optimism shocks
as the main driver of macroeconomic fluctuations. We show how their main economic conclusion
dramatically changes once our methodology accounts for the shortcomings of the penalty function
approach. While Beaudry et al. (2011) conclude that optimism shocks are associated with standard
business cycle type phenomena, using our methodology we show that it is very hard to support
such claim. The sharp results reported in Beaudry et al. (2011) are due to biased impulse response
functions and artificially narrow confidence intervals associated with the penalty function approach.

The second application identifies fiscal policy shocks as in Mountford and Uhlig (2009) in order
to analyze the effects of fiscal policy shocks on economic activity. Mountford and Uhlig (2009)’s
main finding is that deficit-financed tax cuts work best among different fiscal policies aimed at
improving GDP. Using our methodology we find no evidence to support their finding. Analogous to
Beaudry et al. (2011), the tight results obtained in Mountford and Uhlig (2009) are due to biased
impulse response functions and artificially narrow confidence intervals associated with the penalty
function approach.

It also important to remark that, at least for the two applications studied in this paper, our
algorithm is faster than the penalty function approach. Our methodology is between 1.6 times and
25 faster than the penalty function approach depending on the number of sign and zero restrictions.
Finally, we wish to argue that the aim of this paper is neither dispute nor challenge SVARs identified
with sign and zero restrictions. In fact, our methodology preserves the virtues of the pure sign
restriction approach developed in the work of Canova and Nicol6 (2002), Uhlig (2005), and Rubio-
Ramirez et al. (2010). Instead, our findings related to optimism and fiscal policy shocks just indicate
that the respective sign and zero restrictions are not enough to accurately identify these particular
structural shocks.

The paper is organized as follows. Section 2 presents the methodology. It is here where we
describe our theoretical contributions and algorithms. Section 3 shows some examples. Section 4
describes the penalty function approach and highlights its shortcomings. Section 5 presents the

first of our applications. Section 6 presents the second application. Section 7 concludes.



2 Our Methodology

This section is organized in three parts. First, we describe the model. Second, we review the efficient
algorithm for inference using sign restrictions on impulse response functions (IRFs) developed in
Rubio-Ramirez et al. (2010). Third, we extend this algorithm to also allow for zero restrictions. It
is important to note that the algorithm proposed by Rubio-Ramirez et al. (2010) and our extension

can be embedded in a classical or bayesian framework. In this paper we follow the latter.

2.1 The Model

Consider the structural vector autoregression (SVAR) with the general form as in Rubio-Ramirez

et al. (2010)

p
yiAo = Zyg_eAg +c+4e for1<t<T, (1)
=1

where y; is a n x 1 vector of endogenous variables, ¢; an n x 1 vector of exogenous structural shocks,
A, an n x n matrix of parameters for 0 < ¢ < p, cis a 1 x n vector of parameters, p is the lag length,
and T is the sample size. The vector ¢;, conditional on past information and the initial conditions
Yo, .-, ¥1-p, is Gaussian with mean zero and covariance matrix I,,, the n x n identity matrix. The

model described in equation (1) can be written as
ViAo =xA  +¢e, for 1 <t<T, (2)

where A/, = Al - A; c ] and x} = [ yi o, o y‘zlffp 1 ] for 1 <t < T. The dimension

of A, is m x n, where m = np + 1. The reduced-form representation implied by equation (2) is
yi=xB+u; forl<t¢t<T, (3)

where B = A, Aj!, u, = £/A; !, and E[uu)) = ¥ = (AgA})~". The matrices B and ¥ are the
reduced-form parameters while Ag and A, are the structural parameters; we assume that A is
invertible.

Most of the literature imposes restrictions on the IRFs. As we will see by the end of this section,
the theorems and algorithms described in this paper allow us to consider a more general class of
restrictions. In any case, we will use IRF's to motivate our theory. Thus, we now characterize them.

We begin by introducing IRF's at finite horizons and then do the same at the infinite horizon. Once



the IRFs are defined, we will show how to impose sign restrictions. In the finite horizon case, we

have the following definition.

Definition 1. Let (A, Ay) be any value of structural parameters, the IRF of the i-th variable to

the j-th structural shock at finite horizon h corresponds to the element in row i and column j of the

matrix
Ly (Ao, Ay) = (AEIJ/FhJ)/7
where - . _ _
AAY T, 0 I,
: e 0
F = and J =
Ap,lAg1 o --- I,
AAY 0 - 0 0

In the infinite horizon case, we assume the i-th variable is in first differences.

Definition 2. Let (Ag, A,) be any value of structural parameters, the IRF of the i-th variable to
the j-th structural shock at the infinite horizon (sometimes called long-run IRF) corresponds to the

element in row i and column j of the matriz

-1
p

Lo (Ag,AL) = (A’O —ZA;> .
(=1

2.2  Algorithm for Sign Restrictions

Let us assume that we want to impose sign restrictions at several horizons, both finite and infinite.
It is convenient to stack the IRFs for all the relevant horizons into a single matrix of dimension
k x n which we denote by f (Ao, A;). For example, if the sign restrictions are imposed at horizon

zero and infinity, then
Lo (Ao, Ay)
Lo (Ao, Ay)

[ (Ao, Ay) =

where k = 2n in this case.
Sign restrictions on those IRFs can be represented by matrices S; for 1 < j < n, where the

number of columns in S; is equal to the number of rows in f (Ag, Ay). If the rank of S, is s;, then
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s; is the number of sign restrictions on the IRFs to the j-th structural shock. The total number of

sign restrictions will be s = Z?Zl sj. Let e; denote the j-th column of L,.

Definition 3. Let (Ao, Ay) be any value of structural parameters. These parameters satisfy the

sign restrictions if and only if

ij (Ao, A+) e; > 0,
for1 <j <n.

From equation (2), it is easy to see that if (Ag, Ay) is any set of structural parameters and Q
is any element of O(n), the set orthogonal matrices, then (Ag, A;) and (A¢Q, A Q) are observa-
tionally equivalent. It is also well known, e.g. Geweke (1986), that a SVAR with sign restrictions is
not identified since for any (Ao, A, ) that satisfy the sign restrictions, (AoQ, A Q) will also satisfy
the sign restrictions for all orthogonal matrices Q sufficiently close to the identity. Therefore, the
set of structural parameters satisfying the sign restrictions will be an open set of positive measure
in the set of all structural parameters. This suggests the following algorithm for sampling from the

posterior of (Ag, A ) conditional on satisfying the sign restrictions.
Algorithm 1.

1. Draw (Ao, A) from the unrestricted posterior.

2. Keep the draw if the sign restrictions are satisfied.

3. Return to Step 1 until the required number of posterior draws satisfying the sign restrictions

have been obtained.

By unrestricted posterior we mean the posterior distribution of unrestricted structural parameters,
i.e. when no identification schemes are considered.

The only obstacle to implementing this algorithm is an efficient technique to accomplish the
first step. For instance, one could use the Gibbs sampler described in Waggoner and Zha (2003a).
However, this technique produces serially correlated draws. Thus, a different approach is needed.
An efficient alternative is to exploit the fact that the space of all structural parameters is equivalent
to the product of the space of all reduced form parameters and O(n). This mapping is given by
(B,X,Q) — (T7'Q,BT'Q), where 3 = T'T is the Cholesky decomposition of 3 such that T
is upper triangular with positive diagonal and Q € O(n). Because (T, BT™!) is observationally
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equivalent to (T~1Q, BT'Q), the likelihood is flat over the space of orthogonal matrices. It is also
the case that the likelihood at the reduced form parameters (B, ) will be equal to the likelihood at
the structural parameters (T~ BT™!). Given a prior on the reduced form parameters, this implies
that the unrestricted posterior is the product of the posterior distribution of the reduced form
parameters with the uniform distribution with respect to the Haar measure on O(n). If the prior
on the reduced form parameters is conjugate, then the posterior will have the multivariate normal
inverse Wishart distribution. There are efficient algorithms for obtaining independent draws from
this distribution. So all that remains to be determined is an efficient algorithm for drawing from
the uniform distribution with respect to the Haar measure on O(n). Canova and Nicolé (2002),
Uhlig (2005), and Rubio-Ramirez et al. (2010) propose algorithms to draw from that set. However,
Rubio-Ramirez et al. (2010) is the only computationally feasible for moderately large SVAR systems

(e.g. n > 4).! Rubio-Ramirez et al. (2010)’s results are based on the following theorem.

Theorem 1. Let X be an n X n random matriz with each element having an independent standard
normal distribution. Let X = QR be the QR decomposition of X.2 The random matriz Q has the

uniform distribution with respect to the Haar measure on O(n).

Proof. The proof follows directly from Stewart (1980). O

The previous discussion and Theorem 1 motivates us to modify the first step in Algorithm 1

applied to (Ag,A;) = (T}, BT }) to obtain the following efficient Algorithm.
Algorithm 2.
1. Draw (B, X) from the posterior distribution of the reduced form parameters.
2. Use Theorem 1 to draw an orthogonal matriz Q.
3. Keep the draw if S;f (T'Q,BT Q) e; > 0 are satisfied for 1 < j < n.

4. Return to Step 1 until the required number of posterior draws satisfying the sign restrictions

have been obtained.

1See Rubio-Ramirez et al. (2010) for details.
2With probability one the random matrix X will be non-singular and so the QR decomposition will be unique if
the diagonal of R is normalized to be positive.



Theorem 1 and Algorithm 2 are replications of Theorem 9 and Algorithm 2 in Rubio-Ramirez et al.
(2010). As in Rubio-Ramirez et al. (2010), instead of working with the reduced form parameters,
one could work directly with the structural parameters, although, in general, this is harder.

At this point it is useful to understand how Theorem 1 and Algorithm 2 work, and more
importantly, how they can be implemented recursively. For 1 < j < n, let x; = Xe; and q; = Qe;.

The q; can be obtained recursively by

o (L, — Q;m1Q) 1) x5 _ N; 1N x; N, N} _1x; for 1<j<n
D@ - Q@) x| NN NG| T
where || || is the Euclidean metric, Q;_; = [(h - %4]7 and N;_; is any n X (n — j + 1) matrix

whose columns form an orthornormal basis for the null space of Q;_1.3 We follow the convention
that Qo is the the n x 0 empty matrix, QoQj is the n x n empty matrix, and Ny is the n x n identity
matrix. Geometrically, q; is the projection of x; onto the null space of Q;;l normalized to be of
unit length. Alternatively, N’_;x; is a standard normal draw from R*~7*" and N’;_;x;/ || N/_;x; ||
is a draw from the uniform distribution on the unit sphere centered at the origin in R*~7*! which is
denoted by S™7J. Because the columns of N;_; are orthornormal, multiplication by N;_; is a rigid
transformation of R*~7*! into R™. From this alternative geometric representation, one can see why
Algorithm 2 produces uniform draws from O(n). For 1 < j < n, the vector q;, conditional on Q,_1,
is a draw from the uniform distribution on S"~7. While it is more efficient to implement Algorithm
2 in a single step via the QR decomposition, the fact that it can be implemented recursively will

be of use when there are zero restrictions.*

2.3 Algorithm with Sign and Zero Restrictions

Let us now assume that we also want to impose zero restrictions at several horizons, both finite and
infinite. Similar to the case of sign restrictions we use the function f (Ag, A) to stack the IRFs at
the desired horizons. The function f (Ag, A ) will contain IRFs for both sign and zero restrictions.
Zero restrictions can be represented by matrices Z; for 1 < j < n, where the number of columns

in Z; is equal to the number of rows in f (Ao, Ay). If the rank of Z; is z;, then z; is the number

3The formula just described to obtain q; recursively for 1 < j < n implicitly imposes the normalization that the
diagonal of R is positive.

4While draws from O(n) can be obtained recursively by drawing from S™~7 for 1 < j < n, O(n) is not topologically
equivalent to a product of spheres, i.e. there does not exist a continuous bijection from O(n) to H?:l Sn=i,
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of zero restrictions associated with the j-th structural shock. The total number of zero restrictions

will be 2z = > 77| z;.

Definition 4. Let (Ao, A}) be any value of structural parameters. These parameters satisfy the

zero restrictions if and only if

Z;f(Ao,A )e; =0
for1 <5 <n.

We can no longer use Algorithm 2 to obtain draws satisfying both the sign and the zero restric-
tions since the set of structural parameters satisfying the zero restrictions will be of measure zero
in the set of all structural parameters. As we show below, as long as there are not too many zero
restrictions, we will be able to directly obtain draws of structural parameters satisfying the zero
restrictions. Because of the same arguments used to motivate Algorithm 1, the set of structural
parameters satisfying both the sign and the zero restrictions will be of positive measure in the set
of structural parameters satisfying the zero restrictions. Thus, we will be able to use the follow-
ing algorithm to make draws from the posterior parameters satisfying both the sign and the zero

restrictions.
Algorithm 3.

1. Draw (Ao, AL) from the posterior satisfying the zero restrictions.
2. Keep the draw if the sign restrictions are satisfied.

3. Return to Step 1 until the required number of posterior draws satisfying both the sign and the

zero restrictions have been obtained.

The only obstacle to implementing this procedure is an efficient technique for the first step.
Given a prior on the reduced form parameters, the posterior satisfying the zero restrictions is the
product of the posterior distribution of the reduced form parameters with the uniform distribution
with respect to the Haar measure on O(n) conditional on the zero restrictions holding. All that
remains to be determined is an efficient Algorithm for drawing from the uniform distribution with
respect to the Haar measure on O(n) conditional on the zero restrictions holding.

The first crucial step is to note that the zero restrictions on the IRFs can be converted into
linear restrictions on the columns of the orthogonal matrix Q. To see this, let (Ag, Ay) be any

value of structural parameters. Note that for any orthogonal matrix Q, we have



Z;f (AQ, A Q)e; =Z;f (Ao, A1) Qe; =Z;f (Ag, Ay)q

for 1 < j < n. Therefore, the zero restrictions associated with the j-th structural shock can be
expressed as linear restrictions on the j-th column of Q. Thus, the zero restrictions will hold if and
only if

Zif (Ao, Ay)q; =0 (4)

for 1 < j < n. In addition to equation (4), we need the resulting matrix Q to be orthonormal. This
condition imposes extra linear constraints on the columns of Q.
Using these two insights the next theorem shows when and how, given any value of the structural

parameters (Ag, Ay ), we can find a Q such that (AyQ, A, Q) satisfies the zero restrictions.

Theorem 2. Let (Ag,A.) be any value of structural parameters. The structural parameters

(AoQ,A.Q), where Q is orthogonal, satisfy the zero restrictions if and only if || q; ||=1 and

Rj (AOa A+) q; =0, (5)

for 1 < 5 <mn, where
ij (A07A+)

/
j—1

RJ (A07 A-‘r) -

Furthermore, if the rank of Z; is less than or equal to n — j, then there will be non-zero solutions

of equation (5) for all values of Q;_.

Proof. The first statement follows easily from the fact that (AqQ, A Q) satisfies the zero restric-
tions if and only if Z; f (Ao, Ay) q; = 0 and Q is orthogonal if and only if || q; [[= 1 and Q)_,q; = 0.
The second statement follows from the fact that the rank of R; (Ag, A ) is less than or equal to
zj + 7 — 1. Thus, if z; <n — j, then the rank of R; (Ag, A;) will be strictly less than n and there

will be non-zero solutions of equation (5). O

Whether or not there will be non-zero solutions of equation (5) for all values of Q,;_1, clearly
depends on the ordering of the equations (columns) of the original system, which is arbitrary. We
shall only consider zero restrictions such that the equations of the original system can be ordered
so that z; <n — j. Because, when considering zero restrictions together with sign restrictions, one

usually only wants to have a small number of zero restrictions, this condition will almost always
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be satisfied in practice. If it is the case that the system can be ordered so that z; < n — j, then
Theorem 2 implies that for any value (A, A) of the structural parameters one can always find an
orthogonal matrix Q such that (AcQ, A, Q) satisfies the zero restrictions. This implies that zero
restrictions impose no constraints on the reduced form parameters, but will impose constraints on
the orthogonal matrix Q.

As mentioned above, drawing (Ap, A, ) from the posterior satisfying the zero restrictions is
equivalent to drawing (Ao, A;) from the unrestricted posterior and making uniform draws Q from
the set of orthogonal matrices such that (A¢Q, A Q) satisfies the zero restrictions. The next

Theorem shows how to use the results in Theorem 2 to do exactly that.

Theorem 3. Let 1 < j < n, let Z; represent zero restrictions with the equations of the system
gwen by (1) ordered so that z; < n—j. Let (Ao, A;) be any value of the structural parameters. Let
Q be obtained as follows.

1. Let j =1.

2. Find a matriz N;_y whose columns form an orthonormal basis for the null space of R;(Ag, AL).
3. Draw x; from the standard normal distribution on R".

4o Let ap = Ny (N} / | NGy, ) 2

5. If 7 = n stop, otherwise let j = j + 1 and move to Step 2.

Then, the random matriz Q has the uniform distribution with respect to the Haar measure on O(n)

such that (A¢Q, A Q) satisfies the zero restrictions.

Proof. By Theorem 2, Q will be orthogonal and (AQ, A, Q) will satisfy the zero restrictions. Let
n; be the number of columns in N;_;. Because q;, conditional on Q;_1, is a draw from the uniform
distribution of the sphere whose dimension is n; — 1, the distribution of Q will be uniform with

respect to the Haar measure on O(n) such that (AgQ, A Q) satisfies the zero restrictions. O

It should be clear from Theorem 3 that for each (Ag, A,) there are several Qs such that
(AoQ, A, Q) satisfies the zero restrictions and that the particular Q to be drawn will depend

®Alternatively, we could draw x; from the standard normal distribution on R™ and get q; = N;_1x;/ ||
N;_1x; ||, where n; is the number of columns in N;_;, which is positive number. This implementation will results
in an even faster procedure.
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on the draw of x; for 1 < j < n. The fact that Theorem 3 allows us to draw Q from the uni-
form distribution with respect to the Haar measure on O(n) such that (AoQ, A, Q) satisfies the
zero restrictions is key. This fact allows us to modify the first step in Algorithm 3 applied to
(Ag,A,) = (T}, BT) to obtain posterior draws that satisfy both the zero and sign restrictions.

Algorithm 4.
1. Draw (B, X) from the posterior distribution of the reduced form parameters.

2. Use Theorem 3, applied to (Ag,A,) = (T, BT™1), to draw an orthogonal matriz Q such
that (T7'Q, BT ~1Q) satisfies the zero restrictions.

3. Keep the draw if S;f (T'Q,BT Q) e; > 0 are satisfied for 1 < j < n.

4. Return to Step 1 until the required number of posterior draws satisfying both the sign and zero

restrictions have been obtained.

It is important to remember that, in the absence of sign restrictions to identify the j-th shock, we
need to normalize the sign of q; using a general normalization rule as described in Waggoner and
Zha (2003b). From Algorithm 4 is also easy to see that, for each (B, ), there is a distribution
of IRFs such that the restrictions hold. This is essential to interpret the results obtained when
analyzing our applications in Sections 5 and 6.

Before presenting some examples of how to apply the algorithms presented in this section, it
is worth noting that although we have used the function f (Ay, Ay) to stack the IRFs, the theo-
rems and algorithms in this paper work for any f (A, A, ) that satisfies the conditions described
in Rubio-Ramirez et al. (2010). Hence, our theory works for any f(Ag, A,) that is admissible,

regular, and strongly regular as defined below.

Condition 1. The function f (Ag, A, ) is admissible if and only if for any Q € O(n), f (AoQ, A, Q) =
f (AO, A+) Q

Condition 2. The function f(Ag, A, ) is regular if and only if its domain is open and the trans-

formation is continuously differentiable with f’ (Ag, A) of rank kn.

Condition 3. The function f(Ag, A,) is strongly regular if and only if it is regular and it is
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dense in the set of k£ X n matrices.

This highlights that our theorems and algorithms allow us to consider two additional class of re-
strictions (in addition to restrictions on IRFs). First, the commonly used linear restrictions on the
structural parameters themselves (Ag, A ). This class of restrictions includes the triangular iden-
tification as described by Christiano et al. (1996) and the non-triangular identification as described
by Sims (1986), King et al. (1994), Gordon and Leeper (1994), Bernanke and Mihov (1998), Zha
(1999), and Sims and Zha (2006). Second, linear restrictions on the Q’s themselves. For instance,
in the case of the latter restrictions one can define f (Ag, Ay) = I,,. This final class will be useful

to compare our methodology to some existing methods of inference.

3 Examples

In this section we present two examples to illustrate how to use our theorems and algorithms. In
both examples, we assume some sign and zero restrictions and a draw from the posterior of the
reduced form parameters in order to show how Algorithm 2 allows us to draw a Q such that the
sign restrictions hold while Algorithm 4 allows us to draw a Q such that both the sign and zero

restrictions hold. The two examples will differ on their set of restrictions.

3.1 Example 1

Consider a five variables SVAR with one lag. The dimension and lag length of SVAR are totally

arbitrary.

3.1.1 A Draw from the Posterior of the Reduced Form Parameters

Let the following B and ¥ be a particular draw from the posterior of the reduced form parameters

| 0.7577 0.7060 0.8235 0.4387 0.4898
0.7431 0.0318 0.6948 0.3816 0.4456
B= 03922 0.2769 0.3171 0.7655 0.6463
0.6555 0.0462 0.9502 0.7952 0.7094
I 0.1712 0.0971 0.0344 0.1869 0.7547
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and

0.0281 —0.0295 0.0029 0.0029 0.0024
—0.0295 3.1850 0.0325 —0.0105 0.0315
=1 0.0029 0.0325 0.0067 0.0054 0.0030
0.0029 —0.0105 0.0054 0.1471 0.0021
0.0024  0.0315 0.0030 0.0021 0.0140

Let the structural parameters be (Ag, A,) = (T~1, BT™!), hence

5.9655 0.5911 —1.4851 —0.0035 —0.4591
0 0.5631 —0.1455 0.0321 —0.0566

Ay = 0 0 12.9098 —2.2906 —3.5385
0 0 0 2.6509  0.0072
0 0 0 0 8.9469

and

[ 45201 0.8454 9.4033 —0.7034 1.0835

4.4330 0.4572 7.8615 —0.5815 1.1879
Ay = 23397 0.3878 3.4710 1.3104 4.4701
3.9104 0.4135 11.2867 —0.0694 2.6867
I 1.0213 0.1559 0.1757  0.4192  6.5477

Assume that we want to impose restrictions at horizon zero, two, and infinity. These three IRFs

are

0.1676 0 0 0 0
—0.1760  1.7760 0 0 0
Lo(Ag,A ) = | 0.0173  0.0200 0.0775 0 0 ,

0.0173 —0.0042 0.0669 0.3772 0
0.0143  0.0192 0.0306 —0.0003 0.1118
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[ 0.1468 2.1329 0.2138 0.5832 0.0522 |
0.0316 1.3934 0.0989 0.3142 0.0241
Lo(Ag,Ay) = | 0.1447 2.2170 0.2294 0.6235 0.0473 |,
0.1181 2.2576 0.2302 0.6779 0.0479
| 0.1405 2.5858 0.2838 0.7751 0.0952

and

0.1159 —0.2625 —0.0832 —0.2330 —0.0145 |
—0.1149 1.3281 —0.0594 —0.2142 —0.0044
Loo(Ag,Ap) = | —0.0194 —0.3461 0.0057 —0.1048 —0.0486
—0.0449 —0.9519 0.0389  0.2935 —0.0268
—0.0999 —1.6985 —0.0220 —0.2832 0.2129

Then, the function f(Ag, A ) stacks these three IRFs as follows

0.1676 0 0 0 0
—0.1760  1.7760 0 0 0
0.0173  0.0200  0.0775 0 0
0.0173 —0.0042 0.0669  0.3772 0

0.0143  0.0192  0.0306 —0.0003 0.1118
0.1468  2.1329  0.2138  0.5832  0.0522

Lo(Ao, A}) 0.0316  1.3934  0.0989  0.3142  0.0241
F(Ag, AL = | Ly(Ag,AL) | = | 01447 22170 02294 0.6235  0.0473
Lo(Ag,A.) 0.1181  2.2576  0.2302  0.6779  0.0479

0.1405  2.5858  0.2838  0.7751  0.0952
0.1159 —0.2625 —0.0832 —0.2330 —0.0145
—0.1149 1.3281 —0.05394 —-0.2142 —0.0044
—0.0194 —0.3461 0.0057 —0.1048 —0.0486
—0.0449 —-0.9519 0.0389 0.2935 —0.0268
| —0.0999 —1.6985 —0.0220 —-0.2832 0.2129
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3.1.2 The Restrictions

Assume that we want to impose a positive sign restriction at horizon zero on the response of the
first variable to the first structural shock, a negative sign restriction at horizon two on the response
of the third variable to the fourth structural shock, a zero restriction at horizon infinite on the
response of the second variable to the second structural shock, and a zero restriction at horizon
zero on the response of the fifth variable to the third structural shock. These restrictions can be

enforced using the matrices S; and Z; for 1 < j <n

S1 = [1 OOOOOOOOOOOOOO}
Sy = [OOOOOOO -1 0000000}
Zy, = [OOOOOOOOOOO 1 OOO}

232[000010000000000]

Since there are no sign restrictions associated to the second, third, and fifth structural shocks, we

do not need to specify S, S3, and S5. The same is true for Zq, Z4, and Zs.

Sign Restrictions Next we enforce the sign restrictions using Algorithm 2. Assume that we

draw

0.9848 —0.7235 —0.6087 1.4874  1.2671
0.3153 —0.0684 —-1.7604 0.4111  0.2459
X =1 -1.1912 15261 —1.5656 —1.8236 —0.6564 |,
—0.5070 —0.1686 —0.1778 —0.4927 1.6206
—1.2656 —0.9995 0.1588 —1.1497 1.1970

where each element is drawn from an independent standard normal distribution. Then, the Q
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associated with the QR decomposition is

04723 —0.2394 —-0.4351 0.6775 —0.2668 ]
0.1512  0.0099 —0.8032 —0.5492 0.1741
Q=] —0.5713 0.6350 —0.3571 0.3061 —0.2217
—0.2432 —0.1638 —0.1180 0.3784  0.8700
—-0.6070 —0.7159 —0.1554 —0.0493 —0.3041 |

Note that for this particular draw of Q the sign restrictions are satisfied

Slf (Ao, A+) q: = 0.0792 > 0,

and

Sif (Ao, AL)qy = 0.8156 > 0.

However, since the set of structural parameters satisfying the zero restrictions is of measure zero in
the set of all structural parameters, there is no reason to expect the zero restrictions to be satisfied

for such Q. As it can be seen, in this case they do not hold,

Zyf (Ao, Ay)qz =0.0413 # 0,

and

Z3f (Ao, Ay)qs = —0.0499 # 0.

Sign and Zero Restrictions We now illustrate how to find a Q that satisfies sign and zero
restrictions based on Algorithm 4. Let us assume that in Step 1 we use our draw from the posterior
of the reduced form parameters and, hence, our draw of the structural parameters. Then, Step 2

of Algorithm 4 is as follows.

1. Let j = 1.

2. Find a matrix N;_; whose columns form an orthonormal basis for the null space of R;(Ag, A )
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NO - I5.

3. Draw x; from the standard normal distribution on R"

!/
Xy = [ 1.0347 0.7269 —0.3034 0.2939 —0.7873] .

4. Let q; = Ny (Nj_yx;/ | Nj_ix; )

!/
a1 = [ 0.6683 0.4695 —0.1960 0.1898 —0.5085] .

5. If j = n stop, otherwise let 7 = j + 1 and move to Step 2.

Thus, if we repeat the same steps until j equals 5, we get the following matrices.

0.0661  0.1248
Ny = | 0978 0.0074
0.0458  0.9395
—0.0689  0.0487

—0.1312
—0.5375
N3 = | 0.1477
0.6669
—0.4767

0.1752  —0.3153 0.5347

0.0675

—0.0477 | Ny

0.1278
0.8312

0.5582
—0.4404
0.5736
—0.4043

—0.0449

, and Ny =

18

0.0503 —0.6248
—0.1998  0.7253
—0.9299 —0.1600

0.1142  0.2408

0.2825  0.0001

0.5726
—0.3391
0.5387
—0.5151
0.0395




X9 =

q2

0.8884
—1.1471
—1.0689
—0.8095

—2.9443

03224 |
—0.1382
—0.2651
05962

—0.6717

» X3

1.4384
0.3252
—0.7549
1.3703
—1.7115

0.3473
—0.5269
—0.7352
—0.0170

0.2469

)y X4

—0.1022 |
—0.2414
0.3192
0.3129

—0.8649

~0.0311 |
—0.6065
0.2461
05856

—0.4772

, and x5 =

, and q5 =

—0.0301 |
—0.1649
0.6277
1.0933
1.1093

—0.5726 |
0.3391
—0.5387
0.5151
—~0.0395

By the theorems introduced in Section 2, the resulting Q is an uniform draw from the set of

orthogonal matrices such that (AgQ, A, Q) satisfies the zero restrictions. In this case, the sign

restrictions also hold

and

Slf (Ao, A+) q: = 0.1120 > O,

S4f (Ao, A+) qs = 0.9501 > 0.

Of course, the fact that the sign restrictions hold depends on the draw of x; for 1 < j < n.

3.2 Example 2

Consider the SVAR and the reduced form parameters B and X from Example 1. In addition, for

easy of exposition let us consider sign and zero restrictions that are imposed at the same horizons

as in Example 1.

19



3.2.1 The Restrictions

Let us consider a different set of restrictions than in Example 1. Assume that we want to impose a
negative sign restriction at horizon two on the response of the third variable to the second structural
shock, a positive sign restriction at horizon two on the response of the fourth variable to the second
structural shock, a negative sign restriction at horizon zero on the response of the second variable
to the third structural shock, a positive sign restriction at horizon infinite on the response of the
second variable to the fifth structural shock, a zero restriction at horizon zero on the response of
the first variable to the first structural shock, a zero restriction at horizon zero on the response of
the third variable to the first structural shock, and a zero restriction at horizon two on the response
of the fifth variable to the fourth structural shock. These restrictions can be enforced using the

matrices S; and Z; for 1 < j <n

00000O0O0O-100U0O0%0UO0O
00000O0OO0OO0O 1O0O0O0OO0OGO0O®O

82:
S32[0—10000000000000}

S5:[000000000001000]

10000O0O0O0OO0OO0OO0OO0OOO0O
0010O00O0O0OO0OO0OO0OOO0O®O0®O0

Z1 -

Z4=000010000000000]-

Since there are no sign restrictions associated to the first and fourth structural shocks, we do not

need to specify S;, and S,. Similarly, we do not specify Z,, Z3, and Zs.

Sign Restrictions Let us start by the sign restrictions which can be enforced using Algorithm

2. Assume that we draw
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[ 09195 01651 0.7871 00329 03847 |
_0.2499 —04216 —0.4650 —1.8634 1.0269
X=| —02079 02769 13521 —0.2368 —1.3322
0.0978  1.3410 —0.2697 0.0062  0.4697
| 00693 L7345 0.8953 —0.2012 0.0055 |

where each element is drawn from an independent standard normal distribution. Then, the matrix

Q associated with the QR decomposition is

| 0.6582 —0.2495 0.5362 —0.1878 0.4263 ]
—0.1789 —0.1192 —0.2003 —-0.9551 0.0375
Q= —0.1488 0.2124 0.7167 —0.1734 —0.6238
0.7143  0.3059 —0.3889 —0.1094 —0.4827
_—0.0496 0.8859  0.0866 —0.1021 0.4413 |
Note that given Q the sign restrictions are satisfied since
/
Sof (Ao, Ap)qy = [0.0190 0.0002 | >0
Ssf (Ao, Ay)qs = 0.4500 >0
Ssf(Ag,Ay)gs = 0.1394 > 0.

As in Example 1, there is no reason to expect the zero restrictions to be satisfied for such Q. Indeed,

in this case they do not hold,

Z,f (A07A+) qQi1 =

and

0.1103

—0.0037

/

0,

Zif (Ag,Ar)qs = —0.0377 #0.
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Sign and Zero Restrictions We now illustrate how to find a Q that satisfies sign and zero
restrictions based on Algorithm 4. As in Example 1, assume that in Step 1 we use our draw from
the posterior of the reduced form parameters and, hence, our draw of the structural parameters.

Then, Step 2 of Algorithm 4 is as follows.

1. Let j = 1.

2. Find a matrix N;_; whose columns form an orthonormal basis for the null space of R;(Ag, A)

0 —0.9682 0.2502 0 0
No=10 0 0 1.0000 0
0 0 0 0 1.0000

3. Draw x; from the standard normal distribution on R"

!/
Xy = [ 0.3409 —0.5418 1.5292 0.3320 —0.4429] .

4. Let q; = N,y (N_yx;/ || NG % ).

/

ad = [O —0.8265 0.2135 0.3124 —0.4168

5. If j = n stop, otherwise let 7 = 7 + 1 and move to Step 2.

Thus, if we repeat the these steps until j equals 5, we get the following matrices.

0.8265 —0.2135 —0.3124 0.4168 0.4549 —0.1767 0.8185
0.3169  0.1765  0.2582 —0.3445 0.4177  0.3072  —0.1995
Ny = | 01765 0.9544 —0.0667 0.0890 | ,Na= | 0.6276 —0.1331 —0.1074 |,
0.2582 —0.0667 0.9024  0.1302 0.0468  0.9254  0.1984
—0.3445 0.0890  0.1302  0.8263 —0.4718 0.0164  0.4893
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X2

a2

—0.4423
2.0019
0.5116

—0.7100
1.9563

—0.3033
—0.0908
0.7289
0.0664
0.6034

,d3 =

—0.6323
—0.3924
—0.5271
—0.2887
0.2917

0.2203
—0.1524
0.0247
0.7181
1.0279

0.3704
—0.1394
—0.3783

0.6279

0.5532

0.6092
—0.3678
, and Ny = | 0.0459
—0.6484
0.2668

0.3112
1.2880
Xy = 0.2050
—0.3948
—1.0959 |

, and x5 =

0.6323
0.3924
A4 = 0.5271
0.2887
—0.2917 |

, and g5 =

In this case, the sign restrictions also hold

Saf (Ao, Ay) qy
Ssf (Ag, AL)qs
Ss5f (Ao, Ay)qs

!/

= [0.0082 0.0008 | >0
= 0.3127 >0

= 0.4235 > 0.

—0.3828 ]
—0.3661
0.3669
0.2647
0.8716

—0.6092 ]
0.3678
—0.0459
0.6484
—0.2668 |

Clearly, the fact that the sign restrictions hold depends on the draw of x; for 1 < j < n.

4 The Mountford and Uhlig (2009) Methodology

In this section, we discuss the penalty function approach with sign and zero restrictions developed

by Mountford and Uhlig (2009). First, we describe the methodology. Second, we highlight how
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the procedure selects one particular orthogonal matrix Q instead of drawing from the conditional
uniform distribution derived in Subsection 2.3. We also analyze the consequences of this drawback.
Third, we formally show how selecting a particular orthogonal matrix Q may impose additional
sign restrictions on variables that are seemingly unrestricted.

In sections 5 and 6, we will analyze two applications that have been previously studied in the
literature using the penalty function approach. First, the effects of optimism shocks as a source
of business cycle fluctuations studied by Beaudry et al. (2011). Second, the effects of fiscal policy
shocks on economic activity studied by Mountford and Uhlig (2009). We will compare their reported
outcomes (that we replicate in this paper) with the results obtained using our methodology. The
comparison will allow us to show how picking a single orthogonal matrix Q instead of drawing
from their conditional uniform distribution generates artificially narrow confidence intervals and

introduces bias on the IRFs and other statistics of interest.

4.1 Penalty Function Approach with Sign and Zero Restrictions

Let (Ap, A ) be any draw of the structural parameters. Consider a case where the identification of
the j-th structural shock restricts the IRF of a set of variables indexed by I; . to be positive and
the IRF of a set of variables indexed by [;_ to be negative, where [, . and I;_ C {0,1,...,n}.
Furthermore, assume that the restrictions on variable ¢ € I;  are enforced during H;; periods
and the restrictions on variable ¢ € I; _ are enforced during H; ; _ periods. In addition to the sign
restrictions, assume that the researcher imposes zero restrictions to identify the j-th structural
shock. Let Z; and f (Ao, A;) denote the latter. The penalty function approach finds an orthogonal
matrix Q* = [q’f e q;] such that IRFs come close to satisfying the sign restrictions, conditional
on the zero restrictions being satisfied, according to a loss function.® In particular, for 1 < j < n,
this approach solves the following optimization problem

*_

q; = argming . ¥ (q;)

subject to

Z;f (Ao, A;)q; =0and Q_,q; =0

6See Mountford and Uhlig (2009) for details.
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where

H;y , H; _
_ eiLh(A,A eLhA,A ),
V)= S5 (AR ) 35 (S A0,
i€l; h=0 iel_ h=0

g(w) = 100w if w > 0 and g(w) = w if w < 0, 0; is the standard error of variable i, Q}_, =
[(ﬁ q;fil} for 1 < j <mn,and S = S° We follow the convention that Qj is the the n x 0
empty matrix.”

As before, if the prior on the reduced form parameters is conjugate then the posterior of the
reduced form parameters will have the multivariate normal inverse Wishart distribution. There are

very efficient algorithms for obtaining independent draws from this distribution, hence, normally

the research will use the above algorithm where (Ag, A,) = (T~!, BT™).

4.2 Choosing a Single Orthogonal Matrix Q

As mentioned above, the set of structural parameters satisfying the sign and zero restrictions is of
positive measure on the set of structural parameters satisfying the zero restrictions. Conditional
on a draw from the posterior of the reduced form parameters, our Algorithm 4 uses this result to
draw from the uniform distribution of orthogonal matrices conditional on the zero restrictions being
satisfied. The penalty function approach abstracts from using the result. Instead, given any draw
of the reduced form parameters, (B, X), the penalty function chooses an optimal orthogonal matrix

Q= [qi* e qﬂ € O(n) that solves the following system of equations

Z;f (T7',BT~')q; =0 and

<X (€L, (T, BT ) )

B)- 3 3o (BN y s (¢

g; 0;
i€ly h=0 i€l h=0
for 1 < j < n where, in practice, it is also the case that (Ao, A;) = (T~ BT ') and ¥ (g}) is the
value of the loss function at the optimal value @j. Of course, the optimal orthogonal matrix that

solves the system of equations is the one that minimizes the loss function.

"To obtain o;, we compute the standard deviation of the OLS residuals associated with the i-th variable.
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There are, at least, three possible issues with this approach. First, the optimal orthogonal
matrix Q* that solves the system of equations may be such that the sign restrictions do not hold.
Second, since only one orthogonal matrix is chosen, the researcher is clearly not considering all
possible values of the structural parameters conditional on the sign and zero restrictions holding.
In the applications, we will see how this issue greatly affects the confidence intervals. Third, it is
easy to guess that by choosing a single orthogonal matrix to minimize a loss function we may be
introducing bias on the IRFs and other statistics of interest. Assume that the IRF's of variables to
a particular shock are correlated. Then, by choosing a particular orthogonal matrix that maximizes
the response of a set of variables to the shock by minimizing the loss function, we are biasing the
response of the other variables to the same shock. In that sense, the penalty function approach
will behave as if there were additional sign restrictions on variables that are seemingly unrestricted.
In general, it is hard to formally prove such claim because the optimal orthogonal matrix, QF,
is a function of the draw of the reduced form parameters; hence, in most cases, we will just be
able to look at the correlations between IRFs. These correlations are useful to understand any
bias that one could find, but they fall short of being a formal argument. Fortunately, there are
exceptions. In the next subsection we present a class of sign and zero restrictions where this claim
can be formally proved. For this class of restrictions, we will formally show how choosing a single
orthogonal matrix may impose additional restrictions on variables that are seemingly unrestricted.
Nevertheless, even without a formal proof for a general class of sign and zero restrictions, this is
a very serious drawback because one of the most attractive features of sign restrictions is that one
can be agnostic about the response of some variables of interest to some structural shocks. The

applications will also highlight the dramatic economic implications of this final issue.

4.3 Is the Penalty Function Approach Truly Agnostic?

We now formally show how the penalty function approach can impose additional sign constraints
on variables that are seemingly unrestricted. In this sense, the procedure is not truly agnostic and
introduces bias in the IRFs and other statistics of interest. As argued above, choosing a single
orthogonal matrix minimizing a loss function is likely to introduce some bias. Nevertheless, it is
hard to formally prove this because the optimal orthogonal matrix depends on a given draw of
reduced form parameters. Fortunately, there is a class of sign and zero restrictions for which a

formal proof is indeed possible because the optimal orthogonal matrix is independent of the draw
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of the reduced form parameters.

Consider a structural vector autoregression with n variables, and assume that we are interested
in imposing a positive sign restriction at horizon zero on the response of the second variable to the j-
th structural shock, and a zero restriction at horizon zero on the response of the first variable to the
j-th structural shock.® Let (B, X) be any draw from the posterior of the reduced form parameters.
Then, to find the optimal orthogonal matrix, Q*, we need to solve the following problem

*

E.I.j argmin(_h' es \I] (q.] )

subject to

e/Lo (T"',BT ") q; =0 (6)

where

¥(q) -y (-2 T ET ),

02
Note that we are only identifying one structural shock, therefore we do not need to impose the

orthogonality constraint between the different columns of Q*.

Equation (6) implies that the optimal G} has to be such that €{Lo (T~", BT ') @} = ¢]T'q} =

e

t11Q] ; = 0, where the next to last equality follows because T’ is lower triangular. Thus, qi; =
To find the remaining entries of @, it is convenient to write ejLo (T~!, BT ') q; = e,T'g; =
Zi:l ts20s,j, where the last equality follows because T’ is lower triangular. Substituting qj ; = 0

into e,Lo (T, BT 1) q; yields ty2Gs,;. If —e,Lo (T~!, BT 1) q; > 0, then f (féLO(T_ BT )E‘J) _

02

G ' Lo(T-',BT1)g; Go . _ _
—100':2’2%; else f <—62 o )qj) = —822%  Gipee, q;; = 0, and @" must be belong to 5,

o2 o2
it is straightforward to verify that the criterion function is minimized at q; = [ 010 --- 0 ]/.

If the penalty function approach were truly agnostic, it would impose no additional sign restric-
tions on the responses of other variables of interest to the j-th structural shock. In our example,
this is not the case, the penalty function approach introduces additional sign restrictions on the
response of other variables to the j-th structural shock. To illustrate the problem, note that we

have not introduced explicit sign restrictions on any variable except for the second. Nevertheless,

8The order of the restrictions is not important. It is also the case that the results in this subsection hold when
we have several zero restrictions and a single sign restriction identifying a particular structural shock. We choose to
present the results for a single zero restrictions to simplify the argument.
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the response at horizon zero of the i-th variable to the j-th structural shock for ¢ > 2 is

eLo (T, BT ') @} =ty for all i > 2.

Thus, if ta; > 0 (t2; < 0) the penalty function approach imposes an additional positive (negative)
sign restriction on the response of the i-th variable to the j-th structural shock at horizon zero.
Finally, it is worth noting that the result that the criterion function is minimized at q; =
[ 010 --- 0 , implies that, for this class of sign and zero restrictions, the Mountford and
Uhlig (2009) methodology can be seen as a particular case of ours. Why? Because having the
j-th column of the orthogonal matrix equalto | 0 1 0 --- 0 ]/ can always be enforced by zero

restrictions on the j-th column of the orthogonal matrix. In subsection 5.3.1 we will show how to

implement those restrictions in the case of optimism shocks.

5 Application to Optimism Shocks

In this section, we use our methodology to study one application related to optimism shocks pre-
viously analyzed in the literature by Beaudry et al. (2011) using the penalty function approach.
We show how using our methodology to correct the shortcomings of the penalty function approach
affects inference dramatically and has important implications for the economic interpretation of the
results. We also report how our methodology is much faster than the penalty function approach.
In the next section, we will do the same for fiscal policy shocks.

Let us begin revisiting Beaudry et al. (2011). The aim of Beaudry et al. (2011) is to contribute
to the debate regarding the source and nature of business cycles. The authors claim to provide
new evidence on the relevance of optimism shocks as the main driver of macroeconomic fluctuations
by exploiting sign and zero restrictions as identification strategies to isolate optimism shocks using
the penalty function approach. After replicating their results, we repeat their empirical exercises
using our methodology to show how their main economic conclusion substantially changes once
one accounts for the shortcomings of the penalty function approach. While Beaudry et al. (2011)
conclude that optimism shocks are associated with standard business cycle type phenomena because
they generate a simultaneous boom in output, investment, consumption, and hours worked, we
show that, using our methodology, it is very hard to support such claim. Moreover, they also find

that optimism shocks account for a large share of the Forecast Error Variance (FEV) of output,
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investment, consumption, and hours worked at several horizons. But again, once one uses our

methodology such results are also substantially weakened.

5.1 Data and Identification Strategy

Beaudry et al. (2011) use two datasets. In the first one, they use data on total factor productivity
(TFP), stock price, consumption, real federal funds rate, and hours worked. In the second one, they
add investment and output. In both datasets, they consider three identification strategies. The

strategies are described in Table 1.

Identification 1 | Identification 2 | Identification 3
Adjusted TFP 0 0 0
Stock Price + + +
Consumption + +
Real Interest Rate +
Hours
Investment
Output

Table 1: Identification Schemes Defined in Beaudry et al. (2011)

Identification 1 is the benchmark, where optimism shocks (sometimes called bouts of optimism)
are identified as innovations that affect positively the stock prices and that are orthogonal to TFP
at horizon zero. Identification 2, adds a positive response of consumption at horizon zero as an
additional restriction to Identification 1. Finally, Identification 3 adds a positive response of the
real interest rate at horizon zero to Identification 2. Appendix 8.1 gives details on the priors and
the datasets.

Next, we map these identification strategies to the function f(Ay, Ay) and the matrices Ss
and Zs necessary to apply our methodology. Since the sign and zero restrictions are imposed at
horizon zero, we have that f (Ag, Ay) = Lo (A, A,) in both datasets. The matrices Ss and Zs are
a function of the number of variables used in the SVAR. In the smaller dataset, when five variables

are used, the Ss matrices are

01000
01000

812[01000 Sy = ,and 81 =10 0 1 0 0
00100

00010
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for Identifications 1, 2, and 3 respectively, while the Z matrixisZ; = |1 0 0 0 0 ] . In the

larger dataset, when seven variables are used, the corresponding Ss matrices are

0100000
Si;=]0100000],S1= ,and S1= 10 0 1 0
0010000

o]
]
]

for Identifications 1, 2, and 3 respectively, while the Z matrix is Z; = [ 10000000

5.2 IRFs

We first show replications of the IRFs reported in Beaudry et al. (2011) using the penalty function
approach. Then, we analyze how the results change once we use our methodology. Sometimes we
will label our methodology as the ARRW methodology. Panel (a) in Figure 1 shows the IRFs of
TFP, stock price, consumption, federal funds rate, and hours worked under Identification 1 when
using the penalty function approach on the first dataset. This panel replicates the first block of
Figure 1 in Beaudry et al. (2011). The identified shocks generate a boom in consumption and
hours worked. The response of hours worked is hump shaped. We also report 68 percent confidence
intervals. Clearly, the confidence intervals associated with the IRFs do not contain zero for, at least,
20 quarters. Thus, it is easy to conclude that optimism shocks generate standard business cycle type
phenomena. Panels (b) and (¢) in Figure 1 show the IRFs of TFP, stock price, consumption, federal
funds rate, and hours worked under Identifications 2 and 3. These panels replicate the second and
third blocks of Figure 1 in Beaudry et al. (2011). As expected, because of the addition of the sign
restrictions on the IRF of consumption, the results are stronger. Using these two identification
schemes we also find a positive response of consumption and a positive hump shape response of
hours worked to optimism shocks. Furthermore, the positive responses last longer than under
Identification 1 and the confidence intervals tell us that the IRFs are significantly different from
Z€ero.

The findings reported in Figure 1 are robust to extending the number of variables. Figure 3
show the results when we consider the larger dataset. Consumption, hours worked, investment, and
output have positive and long-lasting responses to optimism shocks identified as in Beaudry et al.

(2011). Lack of response of these variables is clearly outside the 68 percent confidence intervals.
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This is true for the three identification schemes.

Once we use the ARRW methodology, the results reported in Beaudry et al. (2011) basically
disappear. Panel (a) in Figure 2 reports the results for the first dataset using the ARRW method-
ology under Identification 1. There are three important differences with the results reported in
Beaudry et al. (2011). First, the penalty function approach chooses a very large median response
of stock prices in order to minimize the loss function. Second, the median IRF's for consumption
and hours worked are closer to zero when we use the ARRW methodology. Third, the confidence
intervals associated with the ARRW are much larger than the ones obtained with the penalty func-
tion approach. As a consequence, using the penalty function approach, there is a upward bias in
the IRFs and artificially narrow confidence intervals.

We need to consider Identifications 2 and 3 (see Panels (b) and (c)), that force consumption to
increase after an optimism shock, to find moderate evidence of a positive IRFs of consumption and
hours worked. But it is still the case that the median response of stock prices is weaker, the median
IRFs of consumption and hours worked are closer to zero (i.e, the upward bias persists) and the
confidence intervals are still quite wide when compared with the ones reported in Beaudry et al.
(2011). As reported in Figure 4, these findings are robust to considering a larger SVAR.

In summary, using the ARRW methodology it is hard to claim that optimism shocks trigger
a boom in consumption and hours worked unless we impose a positive response of consumption
at horizon zero. Even after imposing this extra positive sign restriction, the results under the
ARRW methodology are much weaker. The sharp results reported in Beaudry et al. (2011) are,
as indicated above, due to upward bias in the response of consumption and hours worked and
artificially narrow confidence intervals associated with the penalty function approach. Once we use

the ARRW methodology to solve these two problems the results disappear.

5.2.1 Understanding the Bias and the Narrow Confidence Intervals

We now shed some light on the issues related to the upward bias and the artificially narrow confi-
dence intervals. Let us begin by the upward bias. Figures 5 and 6 plot the median IRF's and the 68
percent confidence intervals obtained using the ARRW methodology and compares them with the
median IRFs obtained using the penalty function approach. Figures 5 plots the IRFs for the five
variables SVAR and Figure 6 does the same for the larger SVAR. In both cases the median IRFs

constructed using the penalty function approach are close to the 84-th percentile band constructed
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using the ARRW methodology. It is easy to observe that the penalty function approach selects
a large response of stock prices to optimism shocks in order to minimize the loss function. By
choosing a large response of stock prices, the penalty function approach is also inducing a large
response of consumption and hours worked because the three responses are positively correlated.
For the five variables SVAR the correlation between the IRF of stock prices to an optimism shock
at horizon zero with the IRF of consumption to the same shock and horizon is 0.27. In the case of
hours worked is 0.10. The correlations are 0.21 and 0.12 in the the larger SVAR.

Let us now consider the artificially narrow confidence intervals. We have repeated several times
that the penalty function approach selects a single orthogonal matrix instead of drawing from their
conditional uniform distribution. As mentioned when describing Algorithm 4, for each draw from the
posterior distribution of the reduced form parameters, there is a distribution of IRF's conditional on
the sign and zero restrictions holding. By selecting a single orthogonal matrix the penalty function
approach takes a single IRF from such a distribution. Figure 7 plots the 68 percent probability
intervals from the distribution of IRFs such that the sign and zero restrictions hold at the OLS
point estimate of the reduced form parameters. These intervals are constructed using a single value
of the structural parameters (the one obtained from the Cholesky decomposition and the OLS point
estimate of the reduced form parameters) and several draws of the conditional uniform distribution
of orthogonal matrix Q. We have generated these draws repeating steps 2 and 3 of Algorithm 4 for
the single value of the structural parameters. The probability intervals are compared with the single
IRF's obtained with the penalty function approach evaluated at the same value of the reduced form
parameters (i.e, the OLS point estimate).” In panel (a) we describe the results for the five variables
SVAR. The dashed line shows the value of the IRFs resulting from the penalty function approach.
The shadow area describes the 68 percent probability intervals obtained with our methodology. No
uncertainty is considered when the penalty function approach is used. In contrast, using the ARRW
methodology we can see that there is an empirically relevant distribution of IRFs conditional on the
sign and zero restrictions holding. Additionally, note that for some variables — such as stock price,
consumption, and hours worked — the IRF's obtained using the penalty function approach are close
to the 84 percent band. Hence, once again, we can see how the penalty function approach picks a
large response of stock prices and there is an upward bias in the response of consumption and hours

worked. In panel (b) we show that this analysis also holds when we use the seven variables SVAR.

9We only present results for identification 1. Similar results are obtained for the other two identification schemes
and alternative point estimates.
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The fact that the Mountford and Uhlig (2009) methodology does not consider the distribution of
IRFs is behind the narrower confidence intervals that Beaudry et al. (2011) report.

We can summarize our findings in Figure 8. Each column compares the posterior distributions
of IRFs at horizon zero and the median IRFs for stock prices, consumption, and hours worked for
each identification using both the penalty function approach and the ARRW methodology.!® The
posterior distributions are approximated using a kernel smoothing function.!? We have focused in
the five variables SVAR. Similar results apply to the seven variables SVAR. Column 1 displays the
results for Identification 1. Comparing the penalty function approach and the ARRW methodology
we reach the following conclusions. First, the posterior distribution of the IRFs of stock prices
obtained using the penalty function approach is center around the right-hand tail of the distribution
obtained using the ARRW methodology. The bias is even more clear looking at the median IRFs.
Second, the penalty function approach dramatically underestimates the variance of the posterior
distribution of IRF's of stock prices. These two results were expected since the penalty function
approach is maximizing the response of stock prices to optimism shocks in order to minimize the
loss function. Since draws from the posterior distribution of the IRFs of consumption and hours
worked are positively correlated with draws of the IRF of stock prices, we also observe artificially
narrow and biased posterior distributions of the IRF's for consumption and hours worked. Columns
2 and 3 show results for Identifications 2 and 3. In both cases, we reach the same conclusion. The
posterior distributions IRFs at horizon zero for stock prices, consumption, and hours worked are

artificially compressed and upward biased when computed using the penalty function approach.

The Penalty Function Approach | The ARRW Methodology
Mean | Std dev Pr(- < 0) Mean | Std dev | Pr(- < 0)
Consumption | 0.1043 | 0.0264 0 0.0413 | 0.1900 0.4160
Hours Worked | 0.0717 | 0.0397 0.0360 0.0199 | 0.2861 0.4700

Table 2: Posterior Probabilities of Negative IRFs at horizon zero: Five Variables SVAR and Iden-
tification 1

We now show that the artificially compressed and upward biased posterior distributions of IRFs
affect the signs of the IRF's of variables that are seemingly unrestricted. Let us first focus on the

five variables VAR and Identification 1. Table 2 compares the posterior probabilities that the IRFs

10We report average median IRFs computed using horizons 0 to 3. The bias is larger using four periods and the
results are emphasized. In any case, the bias persists even if we only use horizon 0.
H'We use the MATLAB ksdensity function based on Bowman and Azzalini (1997).
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for consumption and hours worked at horizon zero are negative for the two methodologies. The
IRF of consumption is never negative when we use Mountford and Uhlig (2009) methodology while
it is negative approximately 40 percent of the time under the ARRW methodology. The same is
basically true for hours worked. Hence, the penalty function approach imposes additional positive
sign restrictions on variables that are seemingly unrestricted. These can also be seen by comparing
the mean responses reported in Table 2. Another important result that can be found in the table
is that the standard deviation of the IRFs at horizon zero is smaller under the penalty function

approach. This is, of course, related to the fact that confidence intervals are wider when using the

ARRW methodology.

The Penalty Function Approach | The ARRW Methodology
Mean | Std dev | Pr(- <0) Mean | Std dev | Pr(- < 0)
Hours Worked | 0.1331 | 0.0389 0 0.0695 | 0.2794 | 0.4110

Table 3: Posterior Probabilities of Negative IRFs at horizon zero: Five Variables SVAR and Iden-
tification 2

The Penalty Function Approach | The ARRW Methodology
Mean | Std dev Pr(- < 0) Mean | Std dev | Pr(- < 0)
Hours Worked | 0.1084 | 0.0379 0.0040 0.0723 | 0.2860 0.4100

Table 4: Posterior Probabilities of Negative IRFs at horizon zero: Five Variables SVAR and Iden-
tification 3

Tables 3 and 4 repeat the exercise for Identifications 2 and 3. As we can see, the IRF at horizon
zero of hours worked under Identification 2 is never negative using the penalty function approach
while they are negative in approximately 40 percent of the draws using our methodology. Hence,
the penalty function approach also introduces additional positive sign restrictions on hours worked
in the case of Identification 2. Something similar happens in the case of identification 3. The IRF
at horizon zero of hours worked is almost never negative using the penalty function approach while

it is negative in 40 percent of the draws using our methodology.

5.3 FVE

Let us now focus on the FVE. Let us first analyze the SVAR with the smaller dataset. We compare
the contribution of optimism shocks to the FEV obtained using the ARRW methodology and the
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penalty function approach. For easy of exposition, in Table 5 we focus on the contributions to the

FEV at horizon 40.'2

’ The ARRW Methodology ‘
Identification 1 | Identification 2 | Identification 3

Adjusted TFP 0.09 0.11 0.16
[0.02,0.23 ] [0.03,0.26 ] [0.05,0.31]
Stock Price 0.15 0.25 0.29
[0.03,0.47 ] [ 0.06 , 0.56 ] [0.08, 0.60 ]
Consumption 0.15 0.27 0.38
[0.02,0.49 ] [0.05,0.59 ] [0.12, 0.67 ]
Real Interest Rate 0.19 0.20 0.22
[0.08,0.43 ] [0.08,0.44 ] [0.08,0.47 ]
Hours Worked 0.17 0.24 0.30
[0.04,0.46 ] [ 0.07 , 0.56 ] [0.08,0.59 ]

’ The Penalty Function Approach ‘
Identification 1 | Identification 2 | Identification 3

Adjusted TFP 0.18 0.23 0.28
[0.09,0.31] [0.10 , 0.40 ] [0.12,0.44 ]
Stock Price 0.73 0.72 0.58
[0.56 , 0.86 ] [0.57,0.82] [0.42,0.71]
Consumption 0.26 0.71 0.76
[0.14 ,0.42 ] [0.55,0.84 ] [0.58, 0.87 ]
Real Interest Rate 0.14 0.13 0.36
[0.08,0.23 ] [0.07,0.22] [0.28 ,0.44 ]
Hours Worked 0.31 0.63 0.50
[0.20 , 0.43 ] [0.49 ,0.74 ] [0.35,0.63 ]

Table 5: Share of FEV Attributable to Optimism Shocks at Horizon 40. Five Variable SVAR

We first consider Identification 1. Using the ARRW methodology, the median contribution of
optimism shocks to the FEV of consumption and hours worked is 15 and 17 percent respectively.
In contrast, using the penalty function approach the median contributions are 26 and 31 percent
respectively. When Identification 2 is used, the median contribution of optimism shocks to the FEV
of consumption and hours is 27 and 24 percent using our methodology, but it is equal to 71 and
63 percent using the penalty function approach. Identification 3 yields the highest contribution of
optimism shocks to the FEV of consumption and hours, 38 and 30 percent respectively, when using
our methodology. However, these values are moderate compared to the 76 and 50 percent that we

found when using the penalty function approach. Table 5 also reports the 68 percent confidence

12Table 13 in the Appendix 8.3 reports the contributions to the FEV at additional horizons.
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intervals. As it was the case with IRFs, the confidence intervals are much wider under the ARRW

methodology. They are so wide that, in some cases, it is easy to argue that optimism shocks explain

little of the FEV of most relevant variables.

|

The ARRW Methodology

|

Identification 1

Identification 2

Identification 3

Adjusted TFP 0.08 0.10 0.13
[0.03,0.21 ] [0.03,0.24 | [0.04 ,0.28 ]
Stock Price 0.11 0.17 0.22
[0.03,0.31] [0.04,0.39 ] [0.06 , 0.43 ]
Consumption 0.10 0.15 0.22
[0.02,0.35] [0.03,0.40 | [0.04 ,0.48 ]
Real Interest Rate 0.13 0.13 0.14
[0.05,0.28 ] [0.05,0.27 | [0.06 , 0.30 ]
Hours Worked 0.10 0.14 0.15
[0.03,0.32] [0.04 ,0.36 | [0.04 , 0.36 |
Investment 0.12 0.16 0.17
[0.04,0.29 ] [0.06 , 0.35 ] [0.06 , 0.36 ]
Output 0.10 0.17 0.23
[0.02,0.32] [0.04,0.39 ] [0.06 , 0.44 ]
Labor Productivity 0.09 0.13 0.19
[0.02,0.29 ] [0.03,0.34 ] [0.06 , 0.43 ]

The Penalty Function Approach

|

Identification 1

Identification 2

Identification 3

Adjusted TFP 0.16 0.22 0.30
[0.07,0.28 ] [0.09, 0.38 ] [0.14 , 0.46 |
Stock Price 0.52 0.62 0.57
[0.36, 0.70 ] [0.48 ,0.74 | [0.43 , 0.69 |
Consumption 0.14 0.55 0.61
[0.06, 0.28 ] [0.40 , 0.70 | [0.43, 0.76 |
Real Interest Rate 0.10 0.06 0.26
[0.05,0.17 ] [0.03,0.13 ] [0.20 , 0.34 ]
Hours Worked 0.16 0.40 0.31
[0.09,0.28 ] [0.27 ,0.54 | [0.18 , 0.45 ]
Investment 0.26 0.46 0.40
[0.16 , 0.38 ] [0.35, 0.58 | [0.26 , 0.54 |
Output 0.24 0.60 0.60
[0.13,0.38 ] [0.46 , 0.72 ] [0.45,0.73 ]
Labor Productivity 0.24 0.37 0.49
[0.11,0.38 ] [0.17 , 0.56 | [0.28 , 0.65 |

Table 6: Share of FEV Attributable to Optimism Shocks at Horizon 40. Seven Variable SVAR

36



The results for the SVAR with the larger dataset are reported in Table 6.13 As expected, because
of the increase in the number of variables, the contribution of optimism shocks declines relative to
the case of five variables. For example, using the ARRW methodology the median contribution
of optimism to the FEV of output are 10, 17, and 23 percent under Identifications 1, 2, and 3,
respectively. In any case, these values are remarkably lower than the ones found using the penalty
function approach: 24, 60, and 60 percent respectively. As before, confidence intervals are much
wider when using the ARRW methodology.

Summarizing, using the ARRW methodology is easy to conclude that optimism shocks explain
a very small share of the FEV of any variable in the SVAR. This conclusion contrast with the
results obtained using the penalty function approach. As it was the case with the IRF's, the penalty
function approach induces an upward bias in the median explained share of the FEV and artificially
narrow confidence intervals. It is because of these two issues that Beaudry et al. (2011) can claim
that optimism shocks explain a large share of the FEV of some relevant variables. Once these two
issues are corrected by the ARRW methodology it is not possible to support such a claim. We have
only reported results for horizon 40 but Appendix 8.3 shows that these conclusions are true at any

horizon.

5.3.1 Replicating the Penalty Function Approach using the ARRW Methodolgy

In this subsection, we show that in the case of Identification 1 the penalty function approach
in Beaudry et al. (2011) can be replicated using the ARRW methodology by considering some
additional restrictions on the orthogonal matrix Q.'* These additional restrictions on the orthogonal
matrix are behind the upward bias and the artificially narrow confidence intervals reported above.

Consider Identification 1 and note that there exists a closed form solution to the minimization
problem embedded in the penalty function approach.'® Specifically, the penalty function is mini-
mized when the first column of the orthogonal matrix equals qf = [0 1 0 --- 0 ]/.16 Thus,
we can replicate Beaudry et al. (2011) using our methodology by imposing zero constraints on the

first column of the orthogonal matrix Q. This can be done defining

13 As before, we only report results at horizon 40. Table 14 in the Appendix 8.3 reports additional horizons.
141n fact, this is true for any identification that fulfills the conditions stated in Subsection 4.3.

15This has been shown in Subsection 4.3.

16Tn this case, there is only one shock to be identified, hence we set j = 1.
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where I,, allows us to put the zero constraints on the orthogonal matrix Q. We only present results
for the smaller dataset, but it is straightforward to extend them to the larger dataset. We define

the matrices S and Z as follows

_1000000000_
0000O0OT1O0O0O0O
SlZOlOOOOOOOO]andZ1=0000000100
000O0O0OO0OOO0OT1TOQO0

_0000000001_

The S matrix is identical to the one reported in subsection 5.1, but the Z matrix has changed to
reflect the additional restrictions on the first column of the orthogonal matrix Q.

Panel (b) in Figure 9 plots the IRFs of TFP, stock price, consumption, federal funds rate, and
hours worked under Identification 1 using ARRW methodology with the additional restrictions on
the first column of the orthogonal matrix Q. The results are identical to those reported in Panel
(a) of Figure 1 that are reprinted in Panel (a) of Figure 9. Thus, we can conclude that, in some
circumstances, the Mountford and Uhlig (2009) methodology can be seen as a special case of ours,
where additional restrictions on the orthogonal matrix are considered.

Summarizing, in this subsection we have shown that in the case of optimism shocks (under Iden-
tification 1) the Mountford and Uhlig (2009) methodology is a particular case of our methodology
with additional restrictions on the first column of Q. In that sense, it is natural that the penalty
function approach produces artificially narrow confidence intervals and biased IRFs. Unfortunately,
we can not show that the penalty function approach is a particular case of our methodology for
all identification schemes. Nevertheless, it should be clear that the Mountford and Uhlig (2009)
methodology always introduces additional restrictions (though not always can be mapped into our

methodology) that create artificially narrow confidence intervals and may introduce bias.
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5.4 Computational Time

Our methodology is faster than the penalty function approach. Table 7 reports the results for the
case of optimism shocks. In the case of the 5 variables SVAR, the penalty function approach is
approximately 24 times slower than our methodology using identification 1, and it is approximately
10 times slower than our methodology using identification 3. Similar results can be found in the

case of the seven variables SVAR.

The Penalty Function Approach The ARRW Methodology Ratio
Five variables SVAR
Identification 1 792.74 32.89 24.10
Identification 2 788.36 49.31 15.98
Identification 3 748.97 78.33 9.56
Seven variables SVAR
Identification 1 990.53 38.81 25.52
Identification 2 979.03 55.54 17.62
Identification 3 986.17 86.08 11.45

Table 7: Computational Time in Seconds

6 Fiscal Policy Shocks

Let us now focus on the second application. In this subsection, we revisit the results reported in
Mountford and Uhlig (2009). The aim of Mountford and Uhlig (2009) is to analyze the effects
of fiscal policy using SVARs. They focus on unanticipated and anticipated fiscal policy shocks.
They also consider three combined shocks (which are linear combinations of the unanticipated
fiscal policy shocks): deficit-spending shocks, deficit-financed tax cuts shocks, and balanced-budget
spending shocks. These shocks are used to compare three fiscal policy scenarios of the same name.
We proceed as in the case of optimism shocks. We first replicate the results that Mountford and
Uhlig (2009) obtain using the penalty function approach. Then, we repeat their empirical work
using our methodology to show how their main results gravely change.!”

Mountford and Uhlig (2009) conclude that deficit-financed tax cuts shocks work best among
the fiscal policy scenarios to improve GDP. In contrast, using our methodology we find no evidence

to support such claim. More generally, we find it is very difficult to reach any conclusion about

17To keep our paper at a reasonable length we omit the analysis of the anticipated fiscal policy shocks.
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the effects of any of the three combined shocks (and therefore about the effects of any of the three
associated fiscal policy scenarios) because of immense confidence intervals around the median IRFs
and the median fiscal multipliers associated to each scenario. As a consequence, any conclusion
derived from Mountford and Uhlig (2009)’s results relies on artificially narrow confidence intervals
associated with the penalty function approach. In fact, once we use the ARRW methodology to
correct for this shortcoming their results disappear.

Furthermore, our findings show that it is very hard to support any of Mountford and Uhlig
(2009)’s claims about the effects of the unanticipated fiscal policy shocks. They focus on two types
of these shocks: unanticipated government revenue shocks and unanticipated government spending
shocks. Regarding unanticipated government revenue shocks, while Mountford and Uhlig (2009)
report that GDP and consumption significantly decline in response to such shocks using the penalty
function approach, we find no support for such claim using our methodology. The median IRF's of
GDP, consumption, and non-residential investment to such shocks are negative using the penalty
function approach, but positive using our methodology. Furthermore, wide confidence intervals
invalidate any conclusion. Regarding unanticipated government spending shocks, the median IRF's
from both methodologies are more similar to each other than in the case of unanticipated government
revenue shocks, but the confidence intervals are also so wide under our methodology that the IRFs
are not statistically different from zero.

Thus, we conclude that, if we use the identification schemes proposed by Mountford and Uhlig
(2009) and described in Table 8 below, little can be said about the effects of unanticipated fiscal
policy shocks (or the linear combinations of them). The sharp results reported in Mountford and
Uhlig (2009) are mostly linked to their factitiously tight confidence intervals and some bias to be
reported below. Once the ARRW methodology corrects these two issues it is very hard to support
Mountford and Uhlig (2009)’s conclusions.

6.1 Data and Identification Strategy

We use the same dataset as Mountford and Uhlig (2009) in order to shed light on the implications
of our methodology. The dataset contains 10 U.S. variables at a quarterly frequency from 1955 to
2000: GDP, private consumption, total government spending, total government revenue, real wages,
private non-residential investment, interest rate, adjusted reserves, producer price index of crude

materials (PPIC), and GDP deflator. The identification strategy is described in Table 8. Appendix
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8.2 gives details about the estimation procedure and the dataset.

Shocks

Business Cycle | Monetary Policy | Gov Revenue | Gov Spending
GDP +
Total Gov Spending +
Total Gov Revenue + +
Interest Rate +
Adjusted Reserves —
PPIC —
GDP Deflator —
Private Consumption +
Private Non-Res Investment +
Wage

Table 8: Mountford and Uhlig (2009)

6.1.1 Unanticipated Fiscal Policy Shocks

We begin by describing the identification of the unanticipated fiscal policy shocks. Following Mount-
ford and Uhlig (2009), we identify these shocks in three steps. In the first step, we identify a
business cycle shock imposing four positive sign restrictions on GDP, private consumption, private
non-residential investment, and total government revenue during four quarters — quarters zero to
three — following the initial shock. In the second step, we identify a monetary policy shock impos-
ing positive sign restrictions on interest rates, and negative sign restrictions on adjusted reserves,
GDP deflator, and PPIC during four quarters following the initial shock. In addition, the monetary
policy shock is required to be orthogonal to the business cycle shock. In the third step, we identify
the unanticipated fiscal shocks. The unanticipated government revenue shock is identified imposing
positive sign restrictions on the response of total government revenue during four quarters follow-
ing the initial shock and requiring that the shock be orthogonal to the business cycle shock and
the monetary policy shock. The unanticipated government spending shock is identified likewise.
Importantly, the unanticipated fiscal shocks are not required to be orthogonal between them.

As in the case of optimism shocks, it is instructive to map the identification strategy to our
methodology. The function f(Ag, A;) and the matrices Ss necessary to apply our methodology

are
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Where 0,,(j),» is & m(j) times n matrix of zeros and m(j) =4 if j = 1 or 2 and m(j) = 1 otherwise,

and
10000O0O0O0O0OO 0001 0 0 0 0O0O
000O0O0OO0OO0OT1O0OPO0 0000 -1 0 0 0O0O
S]_t == ) SQt -
001 0O0O0O0O0OO0O©O 0000 0O -1 0 0O0O
00 0O0OO0OO0ODOTOT1ODO0 0000 O O —-1000O0
S3 = 001000O0O0O0O0|,andSg=|0 100000000 ]
for t = 0,...,3. In addition, we need to impose the orthogonality conditions between the shocks

as described above. This is straightforward from the discussion in Section 2.2. The only challenge
is that Mountford and Uhlig (2009) do not require orthogonality between the unanticipated fiscal
shocks, thus we need to accommodate our methodology to study this case. We accomplish this
requiring that the unanticipated government revenue (spending) shock, associated with the third
(fourth) column of Q, be orthogonal to the first and second column of Q, associated with the
business cycle and monetary policy shocks respectively, without restricting other columns of Q. For
example, in the case of the unanticipated government spending shock this is accomplished modifying

R4 (Ap, A, ) in Theorem 2 to be equal to

Ry (Ag, Ay) = le

The reader should note that a direct application of Theorem 2 would make Ry (Ag, Ay) depend
on Qf instead of Q5. There are no zero restrictions, hence we do not need to define any Z matrix.
Next, we describe the three linear combinations of the unanticipated fiscal policy shocks that are

used to study the three fiscal policy scenarios.
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6.1.2 Fiscal Policy Scenarios

The deficit-spending shocks (used to study the deficit-spending scenario) are a sequence of unantic-
ipated fiscal policy shocks where total government spending rises by 1 percent and total government
revenue remains unchanged during four quarters following the initial shock. The deficit-financed tax
cuts shocks (used to study the deficit-financed tax cuts scenario) are a sequence of unanticipated
fiscal policy shocks where total government spending remains unchanged and total government
revenue falls by 1 percent during four quarters following the initial shock. The balanced-budget
spending shocks (used to study the balanced-budget spending scenario) are a sequence of unantici-
pated fiscal policy shocks where total government spending rises by 1 percent and total government
revenue rises by 1.28 percent during four quarters following the initial shock.'® Let (as,,bs;) for
t=0,...,3 and s € {DS,DTC,BB} denote the weights to be used in the linear combination of the
unanticipated fiscal policy shocks to get the deficit-spending shocks (DS), the deficit-financed tax
cuts shock (DTC), and the balanced-budget spending shocks (BB) respectively. For example, let us
consider the case of a deficit-spending shock. We can solve for such weights by solving the following

linear system of equations

0.01 = Z (e'GSLT_t (1&07 A+) qQ4aps;t + e'GSLO (1&07 A_|_> q3bDS,t) for T = 0, c ,3
t=0

Sl

0 = (egrLr—i (Ao, Ay) quaps, +egplo (Ao, Ay ) qsbps,) for7=0,...,3
1=0

where egs (egr) is a unit vector with a one at the entry associated with total government spending
(government revenue) in the SVAR and zeros otherwise. Then, we can use the weights (aps, bps,)
fort =0,...,3 to build the column vector associated to deficit-spending shocks as qps = quaps; +
qsbpgs for t = 0,...,3. In a similar fashion, we can construct weights for the other two combined

shocks and obtain the column vectors qpre and qgp.

18The percentage increase in total government revenue is higher than the percentage increase in total government
spending so that total government revenues and total government spending increase by the same amount during the
four quarters following the initial shock.
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6.2 IRFs to Unanticipated Fiscal Policy Shocks

Let us begin examining the IRFs. We first show the replications of the IRFs reported by Mountford
and Uhlig (2009) using the penalty function approach and then we analyze how the results change
once we use our methodology. To save space, we do not report results on either business cycle
or monetary policy shocks. Also, we refer to private consumption and to private non-residential
investment as consumption and non-residential investment, respectively. Finally, and also because
of space considerations, we just concentrate on the responses of GDP, consumption, and non-
residential investment. Very similar conclusions can be reached analyzing the responses of the other
variables in the SVAR.

Figure 10 plots the IRFs to an unanticipated government revenue shock. Panel (a) replicates
the results reported on Figure 4 in Mountford and Uhlig (2009). This panel shows that using the
penalty function approach, the median IRFs of GDP, consumption, and non-residential investment
are negative. Furthermore, the 68 percent confidence intervals are narrow and do not contain
zero. Therefore, using the penalty function approach one can easily conclude that unanticipated
government revenue shocks cause a decline in economic activity. In contrast, once we use our
methodology, the sign of the median IRFs changes and the 68 percent confidence intervals are
much wider — as in the case of optimism shocks the penalty function approach creates artificially
narrow confidence intervals. In addition, the penalty function approach chooses a very large median
response of total government revenue, and as a byproduct it introduces a downward bias in the
response of GDP, consumption, and non-residential investment.

Figure 11 plots the IRFs to an unanticipated government spending shock. Panel (a) replicates
Figure 7 in Mountford and Uhlig (2009) and it shows the median IRFs of GDP, consumption,
and non-residential investment. Using the penalty approach, the median response of GDP changes
from positive to negative in period 10, the response of consumption changes from zero to negative
around period 12, and the response of non-residential investment is always negative. Although less
than in the case of unanticipated government revenue shock, the median IRFs change when we use
the ARRW methodology. The changes are very important for non-residential investment (whose
response is positive for 5 periods before becoming also negative). Nevertheless, the confidence
intervals are wider under our methodology and they contain zero. Analogously to the case of
unanticipated government revenue shocks, the penalty function approach introduces an downward

bias (at least for several quarters) in the response of non-residential investment to unanticipated
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government spending shocks and creates artificially narrow confidence intervals. It is also the case
that the penalty function approach picks a large response of total government spending to minimize
the loss function.

Summarizing, using the ARRW methodology we observe important changes in the median IRF's
to unanticipated fiscal policy shocks with respect to the results reported in Mountford and Uh-
lig (2009). As a consequence of choosing a large response of total government revenue and total
government spending to minimize the respective loss functions, the penalty function approach in-
troduces a downward bias in the response of some variables to both shocks. But the main difference
between both methodologies is the width of the confidence intervals. The results obtained using
the ARRW methodology show that the penalty function approach delivers confidence intervals that
are artificially narrow. Once the ARRW methodology corrects for such a problem, it is very hard
to say anything about the effects of either unanticipated government spending shocks or unantici-
pated government revenue shocks on GDP, consumption, or non-residential investment. The results
under the ARRW methodology are very weak. The strong results reported in Mountford and Uhlig
(2009) are due to the bias and artificially narrow confidence intervals associated with the penalty
function approach. Once we use the ARRW methodology to amend these two problems the results

disappear.

6.2.1 Understanding the Bias and the Narrow Confidence Intervals

As before, we now shed some light on the biases and artificially narrow confidence intervals. Let
us begin by the biases related to unanticipated government revenue shock. The penalty function
approach selects a large response of total government revenue to this shock in order to minimize
the loss function. By selecting a large response of total government revenue, the penalty function
approach is implicitly forcing a negative response of GDP, consumption, and non-residential invest-
ment because their IRFs are negatively correlated with the IRF of total government revenue. The
correlations of the IRF of total government revenue to unanticipated government revenue shock at
horizon zero with the IRFs of GDP, consumption, and non-residential investment to the same shock
and horizon are —0.13, —0.13, and —0.01 respectively.

In the case of unanticipated government spending shock the penalty function approach also
selects a large response of total government spending in order to minimize the loss function. By

choosing a large response, the penalty function approach is implicitly forcing a negative response
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of non-residential investment because its IRF is negatively correlated with the response of total
government spending. The correlation between the IRF of total government spending to unantici-
pated government spending shock at horizon zero with the IRF of non-residential investment to the
same shock and horizon is —0.26. Additionally, the penalty function approach is over estimating
the response of GDP and consumption to an unanticipated government spending shock because the
correlations of the IRFs of GDP and consumption with the IRF of government spending are 0.50
and 0.28 respectively.

Let us now focus on the artificially narrow confidence intervals generated by the penalty function
approach. We have shown that for each draw from the posterior distribution of the reduced form
parameters there is a distribution of IRFs conditional on the sign and zero restrictions holding,
and that the penalty function approach selects a single orthogonal matrix instead of drawing from
their conditional uniform distribution. What are the consequences of this? Not surprisingly at this
juncture, the consequence is artificially narrow confidence intervals. To see this, we first examine
the IRFs to an unanticipated government revenue shock evaluated at the reduced form parameters
described in Figure 12. To make our point transparent, we use two separate panels to illustrate that
given a value of reduced form parameters no uncertainty is considered when the penalty function
approach is used.!'® Panel (b) in Figure 12 plots the range (the interval between the maximum
and the minimum IRF) of the distribution of IRFs at the OLS point estimate of the reduced form
parameters. This range characterizes the support of the distribution of IRFs consistent with the
sign and zero restrictions, and it is constructed using the Cholesky decomposition of the OLS point
estimate of the reduced form parameters and several draws of the conditional uniform distribution
of orthogonal matrix Q. The support of the IRFs reported on Panel (b) is in sharp contrast with
the single IRFs reported on Panel (a) obtained using the penalty function approach evaluated at
the same value of the reduced form parameters. Figure 13 shows that the same happens in the case
of the unanticipated government spending shock.

We can summarize our findings in Figure 14. The first column compares the posterior distribu-
tions of IRFs at horizon zero and the median IRFs for total government revenue, GDP, consump-

tion, and non-residential investment to an unanticipated government revenue shock using both the

19Tn the case of optimism shocks we show in the same graph the median IRFs from the penalty function approach,
and the median and 68 percent confidence intervals from the ARRW methodology to illustrate the bias present in
the penalty function approach. In this section we abstract from replicating these graphs to highlight that the penalty
function approach neglects the uncertainty associated with each draw of reduced form parameters.
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penalty function approach and the ARRW methodology.?’ The posterior distributions are approxi-
mated using a kernel smoothing function. Comparing the penalty function approach and the ARRW
methodology we reach the following conclusions. First, the posterior distribution of IRFs of total
government revenue obtained using the penalty function approach is centered around the right-
hand tail of the distribution obtained using the ARRW methodology. The bias is even more clear
looking at the median IRFs. Second, the penalty function approach dramatically underestimates
the variance of the posterior distribution of IRFs of total government revenue. These two results
were expected since the penalty function approach is maximizing the response of total government
revenue in order to minimize the loss function. We also observe very narrow and downward biased
posterior distributions of the IRFs for GDP, consumption, and non-residential investment. Columns
2 does the same for the IRF's of total government spending, GDP, consumption, and non-residential
investment to a unanticipated government spending shock. Again, the posterior distribution of IRFs
of total government spending obtained using the penalty function approach is centered around the
right-hand tail of the distribution obtained using the ARRW methodology. We also observe very
narrow and downward biased posterior distributions of the IRF's for non-residential investment, and
there is an upward bias for the response of GDP.

To conclude we show how the compressed and biased posterior distributions of the IRFs man-
ifest themselves in the imposition of sign restrictions on seemingly unrestricted variables. Table
9 compares the posterior probabilities that the IRFs for GDP, consumption, and non-residential
investment to an unanticipated government revenue shock are negative in at least one of the first
four horizons. The IRF of the three variables are almost always negative when using Mountford
and Uhlig (2009) methodology while it is negative only about 25 percent of the time when using
the ARRW methodology. Hence, in this case, the penalty function approach imposes additional
negative sign restrictions on variables that are seemingly unrestricted.

Table 10 does the same for unanticipated government spending shock. The penalty function
approach imposes an additional negative sign restriction on non-residential investment and an ad-

ditional positive sign restriction on GDP.

20We report average median IRFs computed using horizons 0 to 3. The bias is larger using four periods and the
results are emphasized. In any case, the bias basically persist using horizon 0 only.
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The Penalty Function Approach | The ARRW Methodology

Mean | Std dev | Pr(- <0) Mean | Std dev | Pr(- < 0)
GDP -0.1370 | 0.0757 0.9888 0.1563 | 0.2012 0.2288
Consumption -0.0983 | 0.0852 0.8452 0.0972 | 0.1538 0.2745
Non-res Investment | -0.3554 | 0.4795 0.7655 0.8013 | 1.0829 0.2407

Table 9: Posterior Probabilities of Negative IRFs in at Least One of the First Four Horizons:

Unanticipated Government Revenue Shock

The Penalty Function Approach | The ARRW Methodology

Mean | Std dev | Pr(- <0) Mean | Std dev | Pr(- < 0)
GDP 0.0885 | 0.0565 0.0558 0.0748 | 0.2243 0.3842
Consumption 0.0084 | 0.0531 0.4125 0.0345 | 0.1766 0.4253
Non-res Investment | -0.2211 | 0.3851 0.7147 0.1411 | 1.1947 0.4565

Table 10: Posterior Probabilities of Negative IRFs in at Least One of the First Four Horizons:
Unanticipated Government Spending Shock

6.3 Three Fiscal Policy Scenarios

Equipped with the unanticipated fiscal policy shocks we can analyze the three fiscal policy scenarios.
We first study how the IRFs associated with the deficit-spending, the deficit-financed tax cuts, and
the balanced-budget spending shocks change when using the ARRW methodology with respect
to the results reported in Mountford and Uhlig (2009). Second, we do the same for the fiscal
multipliers. As it has been the case with unanticipated fiscal policy shocks, we just report results
for GDP, consumption, and non-residential investment. Very similar conclusions can be reached

analyzing the responses of the other variables in the SVAR.

6.3.1 IRFs

We begin by the deficit-spending shocks. Panel (a) on Figure 15 replicates the results on Figure 10 in
Mountford and Uhlig (2009). Using the penalty function approach one could conclude that deficit-
spending shocks produce a drop in GDP (after a few periods of a small increase), consumption,
and non-residential investment (although the drop is only statistically significant for non-residential
investment). However, once we use our methodology these results disappear. The median responses
are similar, but there is a very wide range of IRFs that are consistent with these shocks. For this
reason, it is very hard to say anything about the effects of deficit-spending shocks. In most cases

the confidence intervals reported using the ARRW methodology are at least five times bigger than
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the confidence intervals reported using the penalty function approach. This means that, once we
combine the unanticipated fiscal policy shocks, the confidence intervals get compounded and become
even wider than before. For this reason, although there is no apparent bias when analyzing this
scenario, it still hard to reach any conclusion about the effects of deficit-spending shocks. Mountford
and Uhlig (2009) conclusions are based on artificially narrow confidence intervals.

Next, we study deficit-financed tax cuts shocks. We find a picture similar to the previous case.
Panel (a) on Figure 16 replicates the results on Figure 11 in Mountford and Uhlig (2009). We can
see that the median IRFs of GDP, consumption, real, and non-residential investment are positive
and the tight 68 percent confidence intervals do not contain zero. Mountford and Uhlig (2009) use
this result to claim that deficit-financed tax cuts shocks work best to improve economic activity.
On the contrary, the IRFs computed using the ARRW methodology do not provide evidence to
support these findings. The median responses are negative for the first few periods but, again,
enormous confidence intervals make the interpretation of the median IRFs very hard. Therefore,
we find an upward bias when using the penalty function approach to study the deficit-financed tax
cuts shocks. This upward bias and the artificially narrow confidence intervals obtained using the
penalty function approach are behind Mountford and Uhlig (2009)’s conclusions. Once the ARRW
methodology corrects for these two problems it is impossible to support Mountford and Uhlig (2009)
claims. In most cases the confidence intervals reported using the ARRW methodology are one order
of magnitude bigger than the confidence intervals reported using the penalty function approach.

Finally, Mountford and Uhlig (2009) study a balanced-budget spending scenario. Panel (a)
on Figure 17 replicates the results reported on Figure 12 in Mountford and Uhlig (2009). As it
can be seen, the median IRFs of GDP, consumption, and non-residential investment are (almost
always) negative and the narrow 68 percent confidence intervals do not contain zero. Again, once
we consider our methodology there is no evidence to support these results. Although the median
responses are positive for the first few periods, confidence intervals are so wide that it is hard to
conclude anything at all. As before, downward bias and too narrow confidence intervals are behind
any conclusions implied by Mountford and Uhlig (2009) for this scenario.

Thus, we have shown that using our methodology the analysis of the three fiscal policy scenarios
paints a completely different picture than the one reported in Mountford and Uhlig (2009) using
the penalty function approach. The sign of some median IRFs change when we use the ARRW
methodology. The biases that we find are very hard to interpret because these shocks are linear

combinations of shocks that are already biased. However, what it is more important is that our
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methodology obtains 68 percent confidence intervals that are extremely wide. In most cases the
difference between confidence intervals is of one order of magnitude. Because of this, it is impossible
to compare the three fiscal policy scenarios. In contrast, Mountford and Uhlig (2009) can compare
the three scenarios because the penalty function approach produces artificially narrow confidence
intervals.

The comparison between scenarios becomes even harder once we consider the cumulative dis-
counted IRFs to either deficit-spending or deficit-financed tax cuts shocks. The cumulative dis-

counted IRFs at horizon 7 of variable y to the combined shock s is

T

D (1+i) el L (Ao, Ay)qs,

t=0
where e, is a unit vector that selects the IRF of the variable under analysis, q, defines either the
deficit-spending or deficit-financed tax cuts shock depending on the value of s € {DS,DTC}, and
1 denotes the average real interest rate over the sample. The real interest rate is computed as the
difference between the federal funds rate and the inflation rate implied by the GDP deflator, and
in our sample equals 2.51 percent — annualized.

Panel (a) on Figure 18 replicates the results reported on Figure 13 in Mountford and Uhlig
(2009). The panel shows that the median cumulative discounted IRF of GDP to a deficit-spending
shock becomes negative after a few periods and in the case of a deficit-financed tax cut shock is
always positive. Moreover, the 68 percent confidence intervals associated with the shocks are narrow
and in the case of deficit-financed tax cut shocks do not contain zero. Based on this evidence,
Mountford and Uhlig (2009) conclude that a deficit-financed tax cut scenario work best to improve
GDP. Unfortunately, once we use the ARRW methodology this result also disappears. The median
cumulative discounted IRF of GDP to a deficit-spending shock is positive during 25 periods and it is
negative for 10 periods for the case of deficit-financed tax cuts shocks. Thus, the signs of the median
cumulative discounted IRF's change. As before, these biases are very hard to interpret because the
deficit-spending and the deficit-financed tax cuts shocks are linear combinations of shocks that are
already biased. But, more importantly, the correctly computed 68 percent confidence intervals
contain zero and are at least five times larger than the ones reported using the penalty function
approach. They are just incredibly large and make the economic interpretation of the results
impossible. They also reiterate that it is not possible to compare the fiscal scenarios and that

any conclusion derived from Mountford and Uhlig (2009)’s results relies on the artificially narrow
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confidence intervals induced by the penalty function approach.

6.3.2 Fiscal Multipliers

In addition to the IRF analysis, Mountford and Uhlig (2009) compute fiscal multipliers to compare
the effects of deficit-spending shocks and deficit-financed tax cuts shocks. Specifically, they compute

the present value multipliers at horizon 7 of combined shock s on variable y

2ol +9) "y Ly (Ao, Ay qs 1
Z;—:O(l + i)_te}vs,th (A()a A+) s (f/GDP)

and the impact multipliers at horizon 7 of combined shock s on variable y

/L, (Ao, Ay) g, 1
evas,yLO (AO7 A+) s (f/GDP),

where e, is a unit vector that selects the IRF of the variable under analysis, e is a unit vector
that selects the IRF of the fiscal variable (total government revenue or total government spending),
(f/GDP) denotes the average share of the selected fiscal variable in GDP over the sample, and vg
is equal to —1 if s = DT'C and y # GDP and equals 1 otherwise. The indicator variable vgy is a
normalization so that the multiplier of the deficit-financed tax cuts shock can be interpreted as the
increase in GDP in response to a decrease in total government revenue.

In the case of present value multipliers y is GDP and f is total government spending (revenue)
when s = DS (DTC). In the case of impact multipliers y can be GDP, total government spending,
or total government revenue and f is total government spending (revenue) when s = DS (DTC).

Table 11 reports the median multipliers. We also report the 68 percent confidence intervals.
Also, quarter ¢ in the table corresponds to horizon t — 1 in the above formulas.

Panel (a) shows the present value multipliers associated with deficit-spending and deficit-financed
tax cuts shocks. The upper block of this panel replicates the results reported on Table 2 in Mount-
ford and Uhlig (2009). The bottom block of this panel reports the results obtained using our
methodology. Using the penalty function approach, the median multipliers associated with deficit-

financed tax cut shocks are positive for, at least 12 quarters. In contrast, these median multipliers
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1 qrt 4 qrts 8 qrts 12 grts 20 qrts Max ‘
(a) Present Value Multipliers ‘
The Penalty Function Approach
DTC 0.28 0.52 1.61 4.48 -4.52 4.48
[0.11, 0.50 | [0.43 ,0.63 ] [1.11,2.27 ] [0.97,15.15] [-9.57 ,4.54] (qrt 12)
DS 0.65 0.44 0.05 -0.28 -1.25 0.65
[0.29,0.98 ] [0.32,0.57 ] [-0.30, 0.38 ] [-1.04,0.41 ] [-4.43,0.42 | (qrt 1)
The ARRW Methodology
DTC -0.81 -0.77 -1.25 -1.76 -1.86 -0.77
[-3.31,087] [-2.91,3.49] [-3.93,1.62 ] [-4.40, 0.84 [-3.40,-0.17] (qrt4)
DS 1.14 0.94 1.22 1.81 3.40 3.59
[-3.32,587] [-6.05,6.52] [-6.17 , 7.36 | [-5.17,9.31 | [-1.97,10.02] (qrt26)
(b) Impact Multipliers: DTC ‘
The Penalty Function Approach
GDP 0.28 0.93 2.02 3.07 2.15 3.21
[011,050] [0.74,113] [1.30,282]  [181,445]  [037,398] (qrt14)
Total Gov Revenue -1.00 -1.00 0.04 0.91 0.80
[-1.00,-1.00] [-1.00,-1.00] [-0.34,0.39] [0.29, 1.57 ] [-0.16 , 1.76 |
Total Gov Spending 0.00 0.00 0.29 0.43 0.37
[-0.00,0.00] [-0.00,0.00] [017,039]  [025,060]  [0.10,0.71]
The ARRW Methodology
GDP -0.81 -0.47 0.80 0.61 0.16 0.81
[-3.31,087] [-3.65,3.49] [-4.07 , 1.62 ] [-8.06, 0.84 | [-9.30,18.38] (qrt1l1)
Total Gov Revenue -1.00 -1.00 0.00 0.10 -0.00
[-1.00,-1.00] [-1.00,-1.00] [-2.03,10.58 ] [-4.46 , 7.63 | [-5.70 , 8.19 |
Total Gov Spending 0.00 0.00 0.11 0.10 0.02
[-0.00,000] [-0.00,000] [-054,184] [-067,371] [-1.21,3.89]
(c) Impact Multipliers: DS
The Penalty Function Approach
GDP 0.65 0.25 -0.73 -0.95 -1.46 0.65
[029,098] [-0.14,0.69 | [-1.66 , 0.18 ] [-2.31,0.43 ] [-3.70, 0.26 | (aqrt 1)
Total Gov Spending 1.00 1.00 0.81 0.35 -0.26
[ 1.00, 1.00 | [ 1.00, 1.00 | [0.63,0.97 [0.09, 0.60 | [-0.69, 0.17 |
Total Gov Revenue 0.00 0.00 -0.36 -0.76 -1.53
[-0.00,000] [-0.00,000] [-0.93,021] [-1.64,0.16] [-2.95,-0.35]
The ARRW Methodology
GDP 1.14 0.74 -0.37 0.11 -0.38 1.36
[-3.32,5.87] [-15.04,9.28] [-23.25,11.67] [-30.71,19.00] [-29.38,22.11] (qrt3)
Total Gov Spending 1.00 1.00 0.65 0.25 -0.08
[ 1.00, 1.00 ] [ 1.00, 1.00 | [-4.75,2.44 ] [-7.72,2.93] [-8.05,3.70 |
Total Gov Revenue 0.00 0.00 -0.24 -0.35 -0.83
[-0.00,0.00] [-0.00,0.00] [-15.14,8.17] [-18.81,12.89] [-22.60, 15.07 |

Table 11: Fiscal Multipliers

are negative at all horizons using the ARRW methodology. When we consider deficit-spending
shocks we find that while the median multipliers are negative after 12 quarters using the penalty
function approach, they are positive during 20 quarters using the ARRW methodology. Also, the
median multiplier associated with the deficit-spending shocks are larger. At their maximum value,
the deficit-spending shocks multipliers are five times larger than the ones reported using the penalty
function approach. Hence, the biases reported when describing the IRFs for the unanticipated fiscal
policy shocks also affect the median present value multipliers of the fiscal policies. In any case, these
new biases are hard to interpret because the multipliers being analyzed correspond to shocks that

are linear combinations of shocks that are already biased. Most importantly, the ARRW method-
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ology reports confidence intervals that are huge relative to the ones obtained using the penalty
function approach. They are so wide that it is almost impossible to reach any conclusion about the
sign of the reported multipliers. The width of the confidence intervals highlights, once more, the
effects of compounding confidence intervals once these have been rightly computed.

Panel (b) presents the impact multipliers associated with deficit-financed tax cut shocks. The
upper block of this panel replicates the results reported on Table 3 in Mountford and Uhlig (2009).
The bottom block of the panel reports the results obtained using the ARRW methodology. Clearly,
there are differences between the penalty function approach and our methodology. While Mountford
and Uhlig (2009) find positive GDP median multipliers for at least 20 quarters we find negative
ones during the four quarters following the initial shock. After four quarters the median multipliers
associated with the ARRW methodology also become positive. In addition, even when they share
sign, the median multipliers associated with our methodology are much smaller than the median
multipliers implied by the penalty function approach. In any case, as before, the confidence intervals
computed using the ARRW methodology are so large that it very hard to say anything concrete
about the sign and size of the multipliers.

Panel (c) presents the impact multipliers associated with deficit-spending shocks. The upper
block of this panel replicates the results reported on Table 4 in Mountford and Uhlig (2009), and the
bottom block of the panel reports the results obtained using the ARRW methodology. In this policy
scenario both methodologies find the same sign (except for the 12 quarter) for the median multiplier.
However, the magnitudes are different. The absolute value of the GDP median multipliers resulting
from the ARRW methodology are approximately twice as large as the ones resulting from the
penalty function approach. But it is also the case that the confidence intervals computed using the
ARRW methodology are so wide that it very hard to reach any conclusion.

Summarizing, Mountford and Uhlig (2009) use their results regarding the fiscal multipliers to
emphasize that deficit-financed tax cut shocks work best to increase economic activity. We have
shown that once we use our methodology it is very hard to support such a claim. Some median
multipliers change sign, nevertheless the most important result is that the confidence intervals are

so wide that it is very hard to reach any conclusion from a statistical point of view.
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6.4 Computational Time

Our methodology is also faster than the penalty function approach in the case of unanticipated
fiscal policy shocks. In this case, the penalty function approach is approximately 1.6 times slower

than our methodology. The results are closer, but the ARRW methodology is still faster.

The Penalty Function Approach The ARRW Methodology Ratio
Fiscal Policy Shocks 7162.5 4598.9 1.6

Table 12: Computational Time in Seconds

7 Conclusion

We have presented an efficient algorithm for inference in SVARs identified with sign and zero
restrictions that properly draws from the posterior distribution of structural parameters. The
algorithm extends the sign restrictions methodology developed by Rubio-Ramirez et al. (2010) to
allow for zero restrictions. Our key theoretical contribution shows how to efficiently draw from the
uniform distribution with respect to the Haar measure on the set of orthogonal matrices conditional
on some linear restrictions on their coefficients holding. This is the crucial step that allows us
to draw from the posterior distribution of structural parameters conditional on the sign and zero
restrictions. We have used this algorithm to answer the following questions. Are optimism shocks an
important source of business cycle fluctuations? Are deficit-financed tax cuts better than deficit-
spending to increase output? These questions have been previously studied by Beaudry et al.
(2011) and Mountford and Uhlig (2009), respectively, using the penalty function approach. These
authors have provided very definitive answers. Unfortunately, we have shown that these sharp
conclusions are due to shortcomings in the penalty function approach. In particular, we have shown
that the penalty function approach (1) imposes additional sign restrictions on variables that are
seemingly unrestricted that bias the results and (2) it chooses a single value of structural parameters,
instead of drawing from its posterior, creating artificially narrow confidence intervals that also affect
inference and the economic interpretation of the results. These shortcomings appear because penalty
function approach does not correctly draw from the posterior distribution of structural parameters
conditional on the sign and zero restrictions. This problem is common to all the existing methods.

Our algorithm is also faster than the current ones.
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8 Appendices

8.1 Appendix A. Estimation and Inference: Optimism Shocks

Following Beaudry et al. (2011) we estimate equation (3) with four lags using Bayesian methods with
a Normal-Wishart prior as in Uhlig (2005). Specifically, we take 1,000 parameters draws from the
Normal-Wishart posterior of the reduced form parameters (B, ) and from the conditional uniform
distribution of Q. We use the dataset created by Beaudry et al. (2011). This dataset contains quar-
terly U.S. data for the sample period 1955Q1-2010Q4, and includes the following variables: TFP,
stock price, consumption, real federal funds rate, hours worked, investment, and output. TFP is
the factor-utilization-adjusted TFP series from John Fernald’s website. Stock price is the Standard
and Poors 500 composite index divided by CPI of all items from the Bureau of Labor Statistics
(BLS). Consumption is real consumption spending on non-durable goods and services from Bureau
of Economics Analysis (BEA). The real federal funds rate corresponds to the effective federal funds
rate minus the inflation rate as measured by the growth rate of the CPI all items from BLS. Hours
worked is hours of all persons in the non-farm business sector from BLS. Investment is real gross
private domestic investment from BEA. Output is real output in the non-farm business sector from
BLS. The series corresponding to stock price, consumption, hours worked, investment, and output

are normalized by the civilian non-institutional population of 16 years and over from BLS.

8.2 Appendix B. Estimation and Inference: Fiscal Policy Shocks

Following Mountford and Uhlig (2009) we estimate equation (3) with six lags using Bayesian meth-
ods with a Normal-Wishart prior as specified in Uhlig (2005). We take 1,000 parameters draws from
the Normal-Wishart posterior (B, ) and from the conditional uniform distribution of Q. We used
the same dataset as Mountford and Uhlig (2009). This dataset contains quarterly U.S. data for the
sample period 1955Q1-2010Q4, and includes the following variables: GDP, private consumption,
total government spending, total government revenue, real wages, private non-residential invest-
ment, interest rate, adjusted reserves, producer price index of raw materials, and GDP deflator.

The details of the dataset can be found in Mountford and Uhlig (2009).

8.3 Appendix C. Tables and Figures
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Figure 8: Density of IRFs at Horizon Zero and Median of IRF's from Horizons Zero to Three
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Figure 14: Density of IRFs at Horizon Zero and Median of IRFs from Horizons Zero to Three
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