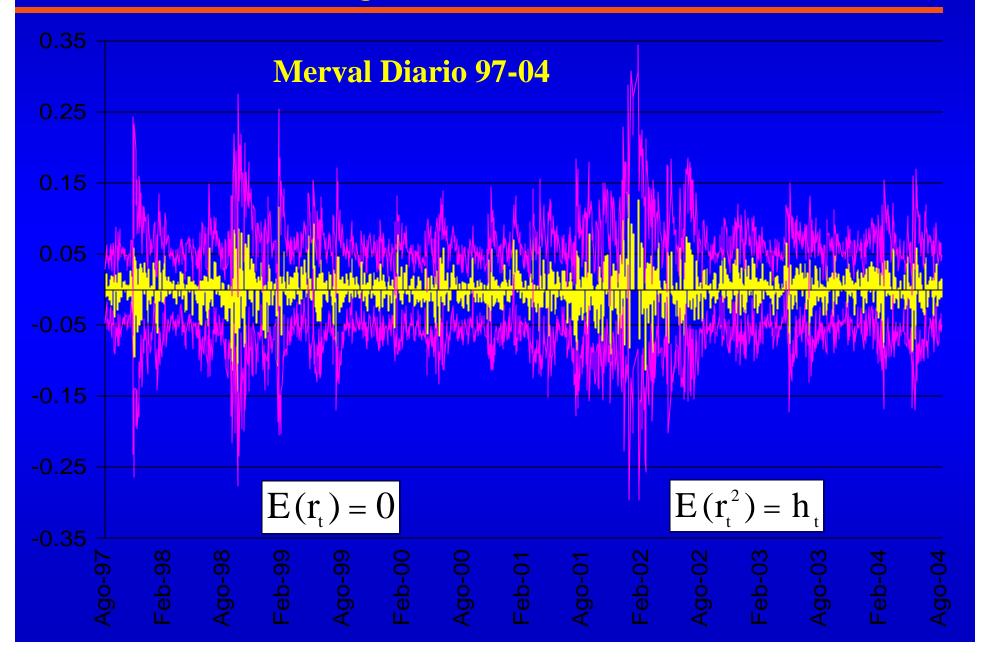
Workshop

HORIZONTES Y FUTURO EN FORECASTING. DESARROLLORO EN BASE A SEMINARIOS DE R. ENGLE Y C. GRANGER


Santiago Pellegrini (IEF - UC3M)

18 de Agosto de 2004

Predicción en la Econometria (¿sólo Financiera?)

- Tratamiento del riesgo en los activos financieros
- Los modelos ARCH y GARCH
- ¿Qué es lo que se viene? (R. Engle)
- Modelos avanzados de predicción multivariante (DCC)
- Ejemplos y aplicaciones
- El concepto de "Distancia en el Tiempo" (C. Granger)
- Bibliografía a Consultar

Tratamiento del Riesgo en series de Activos Financieros

Modelos ARCH y GARCH

ARCH: Heteroscedasticidad Condicional Autorregresiva

Responde a la pregunta ¿Cuál es la volatilidad hoy? Es un promedio ponderado de la volatilidad (varianza) histórica, con mayores pesos en el pasado reciente.

GARCH: ARCH Generalizado

La volatilidad de mañana (h_{t+1}) se predice a partir de:

- La varianza de largo plazo (h)
- La varianza pronosticada para hoy (h_t)
- Las noticias de hoy (el rendimiento de hoy al cuadrado, r_t^2)

والاعرادي Qué es lo que viene? (Seminario de Robert Engle, Mayo 2004)

- MODELOS de "ALTA FRECUENCIA"

Microestructura de los Mercados

- MODELOS MULTIVARIADOS:

DCC: Modelos de Correlación Condicional Dinámica

Modelos para evaluar la Microestructura de los mercados

- MODELOS "Intraday" o "Intrahour"

Problemas de información asimétrica

Modelos de especialista (trade maker)

Estimación de la liquidez en los mercados dirigidos por órdenes

Modelos multivariados

- MANEJO DEL RIESGO ("Risk Management")

$$\underset{w}{\text{Min }} w'H_{t} w \quad \text{s.a. } w'\mu \geq r_{0}$$

donde H_t es la matriz de Covarianzas de los activos de la cartera. De igual manera, sabemos que:

$$\rho_{ijt} = \frac{h_{ijt}}{\sqrt{h_{iit}}} \Rightarrow H_{t} = D_{t} \mathbf{R}_{t} D_{t}$$

donde R_t es la matriz de correlaciones.

Modelos multivariados

- ESTIMADORES UTILIZADOS PARA ñ

Rolling Correlation
Estimator

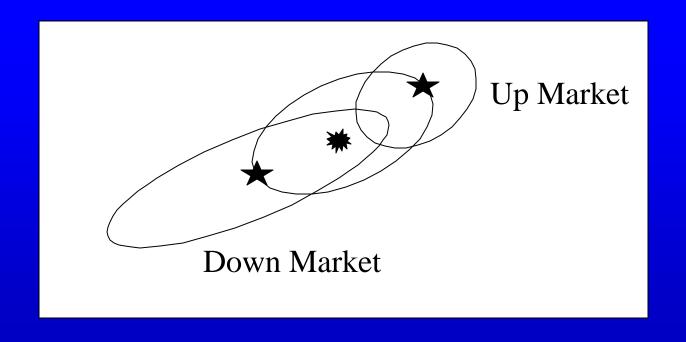
$$\hat{\rho}_{ijt} = \frac{\sum_{s=t-n-1}^{t-1} r_{i,s} r_{j,s}}{\sqrt{\sum_{s=t-n-1}^{t-1} r_{i,s}^2} \times \sqrt{\sum_{s=t-n-1}^{t-1} r_{j,2}^2}}$$

Risk Metrics declining weights estimator

$$\hat{\rho}_{ijt} = \frac{\sum_{s=t-n-1}^{t-1} \lambda^{t-s-1} \mathbf{r}_{i,s} \mathbf{r}_{j,s}}{\sqrt{\sum_{s=t-n-1}^{t-1} \lambda^{t-s-1} \mathbf{r}_{i,s}^{2}} \times \sqrt{\sum_{s=t-n-1}^{t-1} \lambda^{t-s-1} \mathbf{r}_{j,2}^{2}}}$$

Modelos multivariados

- ¿CUÁLES SON LOS PROBLEMAS?

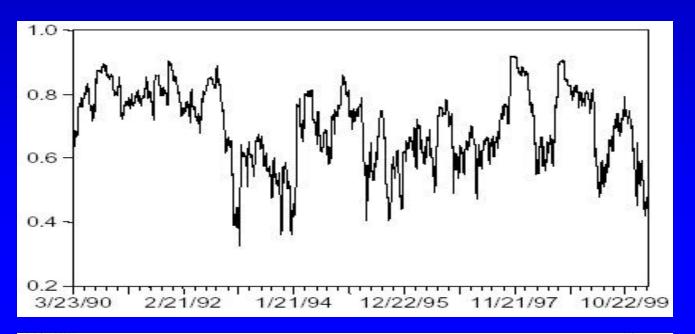

- La colocación en cartera y el manejo del riesgo requieren grandes matrices de covarianzas
- Los agentes de riesgo crediticio necesitan estimar con mucha precisión los modelos en donde se especifiquen las correlaciones en "default"
- El modelo GARCH multivariado no ofrece facilidades para la especificación y estimación

Modelo de Correlación Condicional Dinámico (DCC)

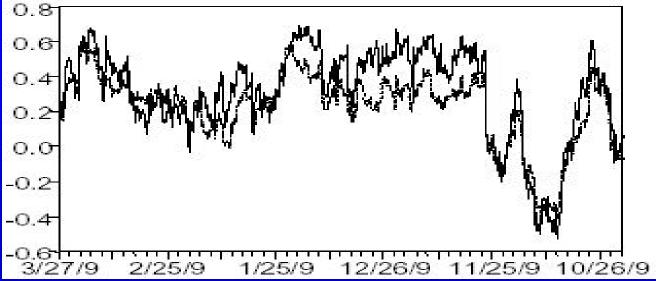
- Nuevo tipo de GARCH multivariado (Engle, 2002 y 2004)
- Estima la volatilidad de cada activo y computa los residuales estandarizados
- Estima las series de covarianzas entre ellos vía MV
- Construye la matriz de covarianzas y correlaciones
- Cuando dos activos se mueven en la misma dirección, la correlación aumenta y viceversa
- Permite tener en cuenta asimetrías en los efectos:

Asimetría en las correlaciones de dos activos

• Si los retornos son los dos negativos en el primer periodo, la correlación es más alta (down market). Si son los dos positivos, la correlación es menor (up market).

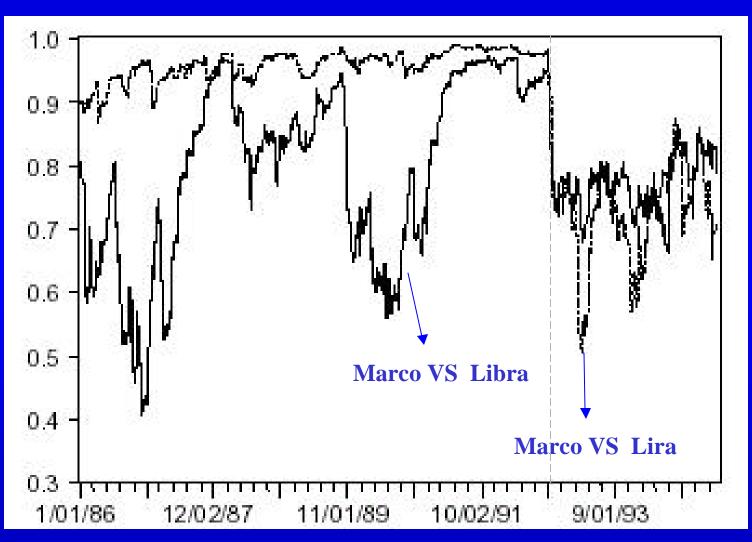

Metodología del DCC

• Estimación en dos etapas:


- Se estiman mediante ML según el modelo GARCH (P,Q) las varianzas de los rendimientos (matriz D_t).
- Con los rendimientos estandarizados por sus Desv. Est. $(\mathring{a}_{ij,t})$ se procede a estimar vía ML las correlaciones, tomando en cuenta:

$$\begin{split} \hat{\rho}_{ij,t} &= \frac{q_{ij,t}}{\sqrt{q_{ii,t}} \times \sqrt{q_{jj,t}}} \quad donde \\ q_{ij,t} &= \overline{\rho}_{ij} + \alpha \left(\epsilon_{i,t-1} \epsilon_{j,t-1} - \overline{\rho}_{ij} \right) + \beta \left(q_{ij,t-1} - \overline{\rho}_{ij} \right) \end{split}$$

Aplicaciones del modelo DCC


VS
NASDAQ
(Engle, 2000)

Bonos y Acciones VS Dow y NASDAQ (Engle, 2000)

Correlación en Tipos de Cambio

El quiebre estructural en la crisis cambiaria de 1992 (Engle, 2000)

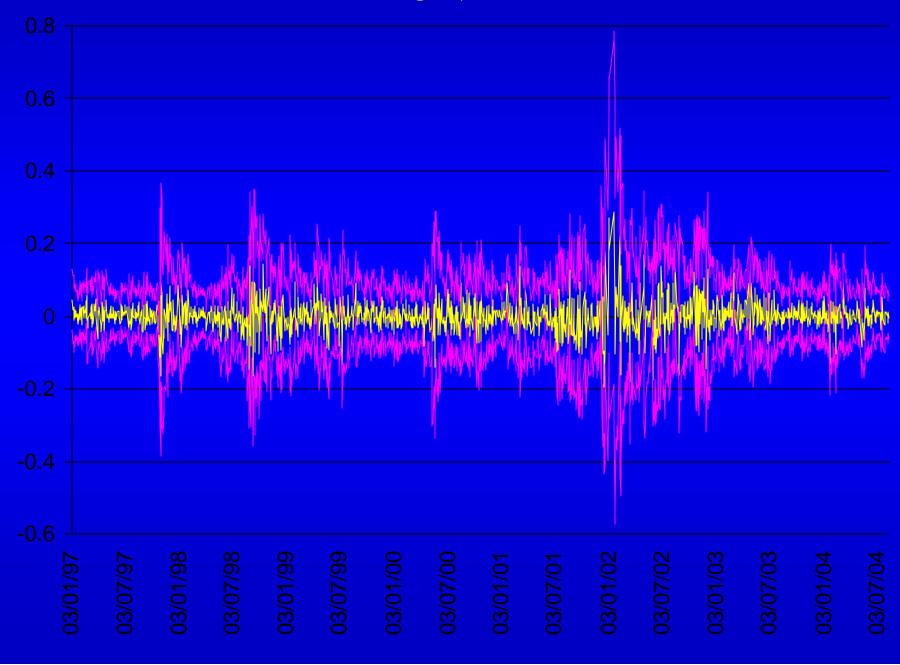
La ventaja principal del modelo DCC

- Es un modelo sencillo y más preciso para identificar, especificar y estimar correlaciones dinámicas.

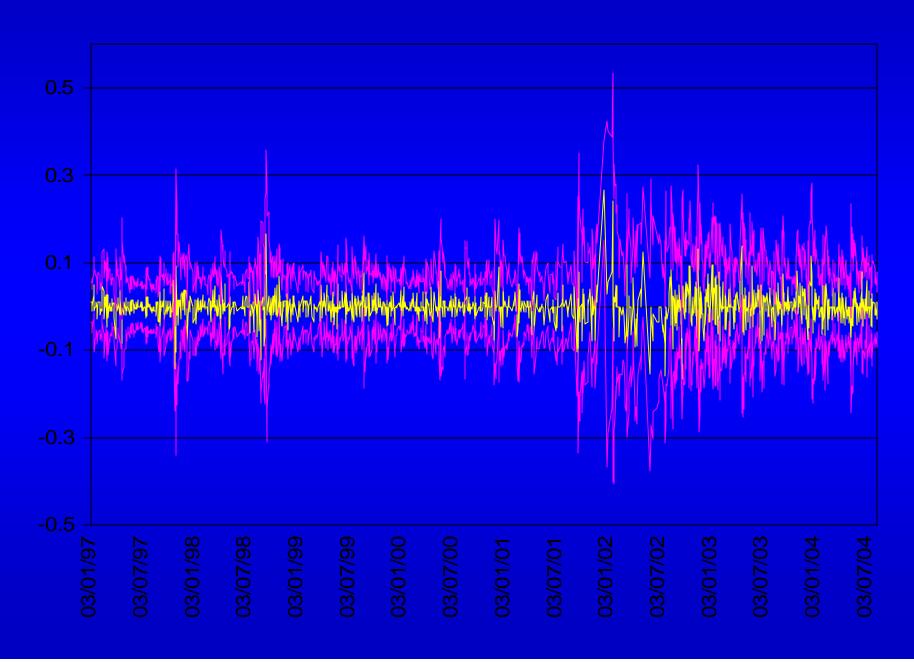
- Así, se pueden hallar estimaciones muy precisas de la matriz de correlaciones sin realizar supuestos fuertes sobre la misma (restricciones a los parámetros)

- Con esto, se pueden construir modelos de estructurales de serie de tiempo más generales y obtener estimadores más precisos, al tener en cuenta que:

$$\varepsilon_{t} \sim N(0, H_{t}), \text{ donde } H_{t} = [h_{ij,t}]$$


Distancia en el Tiempo. (Seminario de Clive Granger, Mayo 2004)

- Nuevo criterio de comparación de modelos de forecasting
- Mide la distancia horizontal más corta entre dos gráficas
- Complementa al criterio de Errores Cuadráticos Medios de los Pronósticos (MSFE), que mide distancias verticales
- Es especialmente útil para comparar modelos rezagados (AR), lo que lo hace aplicable a la mayoría de series macroeconómicas como la inflación y el prodcto bruto
- Ayuda a predecir CUANDO se alcanza un valor determinado de alguna serie macroeconómica o financiera. Por ejemplo, el gobierno podría estar interesado en conocer el momento en que el desempleo llega a un punto determinado, basado en la información existente, para llevar a cabo alguna política


Bibliografía a Consultar

- Engle, R. (2000): Dynamic Conditional Correlation. A simple class of multivariate GARCH models, Discussion paper 09, Dpt. of Economics, University of San Diego
- Engle, R. y Sheppard, K (2001): Theoretical and empirical properties of Dynamic Conditional Correlation Multivariate GARCH, *NBER Working Paper*, 8554
- Granger, C. y Jeon, Y. (2003): A time-distance criterion for evaluating forecasting models, *Intenational Journal of Forecasting*, 19:199-215
- Granger, C. y Jeon, Y. (2003): Comparing forecasts of inflation rate using time distance, *Intenational Journal of Forecasting*, 19:339-349
- Theissen, E. (2003): Trader anonymity, price formation and liquidity, *European Finance Review*, 7:1-26

METROGAS

