# Joint liquidity and capital regulation with a lender of last resort

Demian Macedo and Sergio Vicente Universitat de les Illes Balears and Universidad Carlos III de Madrid Presentation at Universidad Nacional de Córdoba. December 14, 2018

#### Liquidity in the regulatory focus

- Before the 2007-2008 crisis, regulatory focus was mainly on insolvency risk
  - Basel II: capital requirements
- But the early **liquidity phase** of the financial crisis disclosed severe weaknesses on liquidity holdings (e.g. Northern Rock)
- Regulators turned their attention to illiquidity risk
  - Basel III: Liquidity Coverage Ratio and Net Stable Funding Ratio (liquidity requirements)
- But it is unclear which effects **liquidity requirements** will have and whether and how they should **relate to capital requirements** 
  - Basel III liquidity and capital regulation have followed a "silo approach" (independent committees with different objectives)

• QUESTION: What is the **optimal joint capital-liquidity regulation**?

- QUESTION: What is the **optimal joint capital-liquidity regulation**?
  - **Capital requirements** typically set to reduce insolvency risk: success of loans (e.g., Furlong and Keeley (JBF'89); Rochet (EER'92) Hellman, Murdock and Stiglitz (AER'00); Repullo (JFI'04))

- QUESTION: What is the **optimal joint capital-liquidity regulation**?
  - Capital requirements typically set to reduce insolvency risk: success of loans (e.g., Furlong and Keeley (JBF'89); Rochet (EER'92) Hellman, Murdock and Stiglitz (AER'00); Repullo (JFI'04))
  - Liquidity requirements typically set to reduce illiquidity risk: Allen and Gale (JPE'00), (Farhi, Golosov and Tsyvinski (REStud'09), Perotti and Suarez (IJCB'11); Freixas, Martin and Skeie (RFS'11); Calomiris, Heider and Hoerova (WP'15))

• Optimal joint requirements:

- Optimal joint requirements:
  - We show that the effectiveness of one policy tool depends on the amount of the other: **positive** or **negative feedback loop** between capital and liquidity

- Optimal joint requirements:
  - We show that the effectiveness of one policy tool depends on the amount of the other: **positive** or **negative feedback loop** between capital and liquidity
  - We characterize the optimal joint regulation of liquidity and capital taking feedback loops into consideration

#### Related literature: liquidity and capital regulation

- Vives (RFS'14): Insolvency risk (and degree of transparency) affects illiquidity risk through a strategic complementarity to run on the bank's debt
  - Capital requirements and disclosure rules should be jointly determined with liquidity requirements (Focus on **roll-over debt**)
- Walther (JMCB'16): Optimal regulation to reduce a fire-sales pecuniary externality that banks do not internalize
- De Nicolò, Gamba and Luchetta (RFS'14): Numerical illustration of effects of capital and liquidity requirements (the latter always welfare reducing!)
- **Our paper**: Liquidity shocks exogenous, no fire-sales externalities, close-form solutions, focus on **bank's risk-shifting**

#### Model building blocks

- **Insolvency risk**: Standard risk-return trade off (increasing return requires increasing risk) à *la* Dell'Ariccia and Marquez (JFE'06) and Allen, Carletti and Marquez (RFS'11)
- **Illiquidity risk**: Early deposit withdrawals à *la* Diamond and Dybvig (JPE'83) –we add aggregate uncertainty in deposit withdrawals
- Deposit insurance
- Limited liability for banks
- Costly capital

#### Role of capital and liquidity requirements in this paper

• What is the market failure? Why regulate?

- What is the market failure? Why regulate?
  - Limited liability and deposit insurance: **bank does not internalize** the harm on deposit insurance scheme if it fails (downside <u>not</u> into account)

- What is the market failure? Why regulate?
  - Limited liability and deposit insurance: **bank does not internalize** the harm on deposit insurance scheme if it fails (downside <u>not</u> into account)
- Regulator maximizes social welfare (downside into account)

- What is the market failure? Why regulate?
  - Limited liability and deposit insurance: **bank does not internalize** the harm on deposit insurance scheme if it fails (downside <u>not</u> into account)
- Regulator maximizes social welfare (downside into account)
- Regulator can use two policy tools: liquidity and capital requirements

- What is the market failure? Why regulate?
  - Limited liability and deposit insurance: **bank does not internalize** the harm on deposit insurance scheme if it fails (downside <u>not</u> into account)
- Regulator maximizes social welfare (downside into account)
- Regulator can use two policy tools: liquidity and capital requirements
  - Capital requirements reduce insolvency risk ('skin in the game')

- What is the market failure? Why regulate?
  - Limited liability and deposit insurance: **bank does not internalize** the harm on deposit insurance scheme if it fails (downside <u>not</u> into account)
- Regulator maximizes social welfare (downside into account)
- Regulator can use two policy tools: liquidity and capital requirements
  - Capital requirements reduce insolvency risk ('skin in the game')
  - Liquidity requirements reduce illiquidity risk (higher buffer to cope with early withdrawals)

• Liquidity affects the effectiveness of capital requirements:

- Liquidity affects the effectiveness of capital requirements:
  - Reduces illiquidity risk: higher return of reducing insolvency risk (liquidity complements capital)

- Liquidity affects the effectiveness of capital requirements:
  - Reduces illiquidity risk: higher return of reducing insolvency risk (liquidity complements capital)
  - <u>Reduces investment in loans</u>: lower return of reducing insolvency risk (liquidity offsets capital)

- Liquidity affects the effectiveness of capital requirements:
  - Reduces illiquidity risk: higher return of reducing insolvency risk (liquidity complements capital)
  - <u>Reduces investment in loans</u>: lower return of reducing insolvency risk (liquidity offsets capital)
- Capital affects the effectiveness of liquidity requirements:

- Liquidity affects the effectiveness of capital requirements:
  - Reduces illiquidity risk: higher return of reducing insolvency risk (liquidity complements capital)
  - <u>Reduces investment in loans</u>: lower return of reducing insolvency risk (liquidity offsets capital)
- Capital affects the effectiveness of liquidity requirements:
  - Reduces negative effect of liquidity on insolvency risk (liquidity reduces bank's payoff, capital compensates for that): higher value of liquidity (capital complements liquidity)

- Liquidity affects the effectiveness of capital requirements:
  - Reduces illiquidity risk: higher return of reducing insolvency risk (liquidity complements capital)
  - <u>Reduces investment in loans</u>: lower return of reducing insolvency risk (liquidity offsets capital)
- Capital affects the effectiveness of liquidity requirements:
  - Reduces negative effect of liquidity on insolvency risk (liquidity reduces bank's payoff, capital compensates for that): higher value of liquidity (capital complements liquidity)
  - <u>Reduces insolvency risk</u>: higher opportunity cost of liquidity (capital **offsets liquidity**)

• Two regions:

- Two regions:
  - Complementary policy tools (when reinforcing effects into place)

- Two regions:
  - Complementary policy tools (when reinforcing effects into place)
  - Offsetting policy tools (when counteracting effects into place)

- Two regions:
  - Complementary policy tools (when reinforcing effects into place)
  - Offsetting policy tools (when counteracting effects into place)
- Equilibrium capital-liquidity requirements: complementary or offsetting depending on opportunity cost of liquidity and capital

- Two regions:
  - Complementary policy tools (when reinforcing effects into place)
  - Offsetting policy tools (when counteracting effects into place)
- Equilibrium capital-liquidity requirements: complementary or offsetting depending on opportunity cost of liquidity and capital
- A Lender of Last Resort partially substitutes liquidity, making capital and liquidity offsetting tools

# Model

- Four period economy:  $t = \{-1, 0, 1, 2\}$
- Risk-neutral agents
- No discount factor
- Single bank



Figure: Timeline of the model

 At t = -1 the regulator establishes a liquidity l\* and a capital k\* requirement (only verifiable variables)

#### Bank's choices (t=0)



Figure: Timeline of the model

At t = 0 the bank chooses:

- Capital structure: capital, long term deposits and common deposits
- Assets: liquid assets and loans
- Insolvency risk

#### Bank's capital structure

- Normalized size to 1
- (Equity) capital: k
  - Capital requirements:  $k \ge k^*$
- Insured deposits:  $1-{\sf k}$ 
  - Common deposits: d
    - Subject to early withdrawals
    - Interest rate: 1
  - Long-term deposits:  $b\equiv 1-d-k$ 
    - Not withdrawable until maturity
    - Interest rate:  $1 + r \ge 1$
- Assumption costly capital:  $\rho > r$

- Keep  $l \ge l^*$  of liquid assets (cash)
- Invest 1 I in loans

- Bank chooses probability of success  $\theta$  at cost  $\frac{c}{2} \cdot \theta^2$ 
  - Insolvency risk:  $1 \theta$

# Liquidity phase (t=1)



Figure: Timeline of the model

At t = 1, the bank faces an amount  $\beta$  of early withdrawals, where

β ~ F [0, d], F log-concave (e.g. uniform, beta distribution, power,...) and absolutely continuous, f positive in interior of support

# Liquidity phase (t=1)



Figure: Timeline of the model

At t = 1, the bank faces an amount  $\beta$  of early withdrawals, where

- β ~ F [0, d], F log-concave (e.g. uniform, beta distribution, power,...) and absolutely continuous, f positive in interior of support
  - Illiquidity risk: 1 F(I)
#### Loan maturity phase (t=2)



Figure: Timeline of the model

- Loan matures:
  - If successful: M
  - If failure: 0

### Bank's choice of insolvency risk

#### Outline

#### Model

#### • Bank's choice of insolvency risk

- Effect of liquidity requirements on insolvency risk
- Effect of capital requirements on insolvency risk
- Regulation
  - Regulator's problem
  - Optimal requirements
    - Optimal capital with predetermined liquidity
    - Optimal liquidity with predetermined capital
    - Joint optimal capital and liquidity requirements
  - Capital and liquidity: complementary or offsetting?

• Given liquidity I and capital k, the bank chooses  $\theta$  to solve:

$$\left. \begin{array}{ll} \max_{\theta \in [0,1]} & \Pi_B\left(\theta, I, k\right) \\ \\ s.t. & \Pi_B\left(\theta, I, k\right) \geq 0 \end{array} \right\},$$

#### Bank's objective function

$$\Pi_{B}(\theta, l, k) \equiv \int_{0}^{l} \theta \cdot \left[ \underbrace{\underbrace{\underbrace{Upside \ payoff: \ \pi(l,k)}}_{Loan \ Value \ Cash} - \underbrace{\underbrace{(1-k-\beta+b\cdot r)}_{Deposit \ Liabilities}}_{Assets} \right] \cdot f(\beta) \ d\beta$$

$$- \underbrace{\frac{c}{2} \cdot \theta^{2}}_{Cost \ reducing \ insolvency \ risk} - \underbrace{(1+\rho) \cdot k}_{Cost \ of \ Equity}$$

$$\Pi_{B}(\theta, l, k) = \underbrace{\theta \cdot F(l)}_{\text{probability success } Upside payoff} \cdot \underbrace{\pi(l, k)}_{\text{Upside payoff}} - \frac{c}{2} \cdot \theta^{2} - (1 + \rho) \cdot k$$

#### Bank's upside payoff: effect of requirements

• Bank's upside payoff **decreasing in liquidity** (opportunity cost of liquidity):

$$\pi\left(\mathbf{I},\mathbf{k}\right) = \underbrace{\left[\mathbf{M}\cdot\left(\mathbf{1}-\mathbf{I}\right)+\mathbf{I}\right]}_{\mathbf{Assets}} - \left(\mathbf{1}-\mathbf{k}+\mathbf{b}\cdot\mathbf{r}\right)$$

#### Bank's upside payoff: effect of requirements

Bank's upside payoff decreasing in liquidity (opportunity cost of liquidity):

$$\pi\left(\mathbf{I},\mathbf{k}\right) = \underbrace{\left[\mathbf{M}\cdot\left(\mathbf{1}-\mathbf{I}\right)+\mathbf{I}\right]}_{Assets} - \left(\mathbf{1}-\mathbf{k}+\mathbf{b}\cdot\mathbf{r}\right)$$

 Bank's upside payoff increasing in capital (reduction of deposit liabilities-skin in the game):

$$\pi (I, k) = [M \cdot (1 - I) + I] - \underbrace{(1 - \mathbf{k} + b \cdot r)}_{\text{Liabilities}}$$

• Bank's problem, given (*I*, *k*):

$$\theta_{B}\left(l,k\right) \equiv \arg\max_{\theta} \Pi_{B}\left(\theta,l,k\right)$$

$$\theta_{B}(l,k) = \frac{1}{c} \cdot \underbrace{F(l) \cdot \pi(l,k)}_{\text{Expected upside payoff}}$$

# Effect of regulation on insolvency risk

#### Proposition (Effect of liquidity requirements on insolvency risk)

• Liquidity requirements increase insolvency risk

• Bank's profit-maximizing liquidity level is given:

$$I_{B}(k) \equiv \arg\max_{l} \Pi_{B}(\theta, l, k)$$

• Trades-off probability of surviving and upside payoff:

$$I_{B}(k) = \arg \max_{l} \underbrace{F(l) \cdot \pi(l, k)}_{hump-shaped in liquidity}$$

#### Bank's profit-maximizing liquidity



#### Bank's profit-maximizing liquidity and insolvency risk



#### **Binding liquidity requirements**



#### Binding requirements increase insolvency risk



#### Proposition (Effect of capital requirements on insolvency risk)

• Capital requirements reduce insolvency risk

#### Proposition (Effect of capital requirements on insolvency risk)

- Capital requirements reduce insolvency risk
- Capital mitigates the negative effect of liquidity requirements on insolvency risk

Capital reduces insolvency risk for each liquidity level and reduces negative effect of liquidity on insolvency risk



## Regulation

$$\begin{array}{c} \max_{l \in [0,d], k \in [0,1-d]} & \Pi_{R}(l,k) \\ s.t. & \Pi_{B}(\theta_{B}(l,k), l,k) \geq 0 \end{array} \right\}$$

$$\Pi_{R}(I,k) \equiv \Pi_{B}(\theta_{B}, I, k) - \underbrace{(1 - \theta_{B}(I, k) \cdot F(I))}_{\text{Pr. Failure}} \cdot \underbrace{D(I, k)}_{\text{Bank's net liabilities'}}$$

where

$$D(l,k) \equiv \underbrace{(1-\mathbf{k}+b\cdot r)}_{\text{Bank's Gross Liabilities}} -\mathbf{I}$$

- D(I, k) decreasing in **liquidity** *I* (reduces liabilities)
- D(I, k) decreasing in **capital** k (diminishes the amount of deposits)

- 1. Find optimal **capital response**  $k_{R}(I)$  for any given level of liquidity
- 2. Find optimal liquidity response  $I_R(k)$  for any given level of capital
- 3. Optimal liquidity and capital requirements:  $(l^*, k^*)$  such that  $l^* = l_R(k^*)$  and  $k^* = k_R(l^*)$

#### Capital response hat-shaped



#### Liquidity response hump-shaped



#### Liquidity response hump-shaped



# Capital and liquidity: complementary or offsetting?

#### Complementary and offsetting regions



#### Proposition (Complementary or offsetting)

There exists a threshold  $\overline{M}$ , and, for each  $M < \overline{M}$ , there does also exist a threshold  $\hat{\rho}(M)$  such that:

- Liquidity and capital are **offsetting** tools in equilibrium if  $M < \overline{M}$ and  $\rho < \hat{\rho}(M)$

### Equilibrium with $\rho_1 > \hat{\rho}(M)$ and $M_1 < \overline{M}$ : Complementary



#### Complementarity region: the higher $\rho$ , the lower $l^*$



#### The effect of level of $\rho$ on the optimal regulatory policy



## Regulation with a Lender of Last Resort

- LoLR observes whether bank is solvent (As in Rochet and Vives, 2004)
- LoLR lends to a solvent bank
- LoLR lends at rate  $\gamma$ , which is the opportunity cost of its founds.
- LoLR only lends if bank can return funds

• 
$$\beta < \overline{\beta}(I,k) = I + \frac{M(1-I) - D(I,k)}{\gamma - 1}$$

• **Remark:**  $\overline{\beta}(I, k)$  increasing in k (k reduces illiquidity risk)

- Higher capital requirements:  $k^{LoLR} > k^*$
- More solvent (for given liquidity and capital):  $\theta_B^{LoLR}(l,k) > \theta_B(l,k)$
- Lower liquidity requirements:  $I^{LoLR} < I^*$
- For  $\gamma \leq \overline{\gamma}$ , where  $g(\overline{\beta}(0,0))\left(1-\frac{M-1}{\gamma-1}\right) = \frac{1}{2D(0,0)}$ , capital and liquidity are offsetting tools

#### Liquidity and capital offsetting tools with a LoLR


## Liquidity and capital offsetting tools with a LoLR



## Liquidity and capital offsetting tools with a LoLR



## **Concluding Remarks**

## Conclusion

- How should capital and liquidity be jointly regulated?
  - $\bullet~$  We address this question with a focus on bank's ~ risk-taking channel
- We identify a **feed-back loop between capital and liquidity**: the effectiveness of either instrument depends on the level of the other instrument
  - Liquidity and capital **complement** each other when both requirements are "**low**"
  - Liquidity and capital offset each other when both requirements are "high" and in the presence of a Lender of Last Resort
- Capital and liquidity should be regulated jointly taking into account these feedback loops
  - Equilibrium regulation depends on shadow cost of both policy tools and availability of liquidity from other sources (LoLR, interbank, liquidation,...)
  - Capital and liquidity requirements should be set jointly